Arc spraying with the cored wires was applied to deposit FeMnCr/Cr3C2 coatings on low carbon steel substrates, namely FM1, FM2 and FM3. Thermal shock resistances of the coatings were investigated to assess the influen...Arc spraying with the cored wires was applied to deposit FeMnCr/Cr3C2 coatings on low carbon steel substrates, namely FM1, FM2 and FM3. Thermal shock resistances of the coatings were investigated to assess the influence of Cr3C2 content on thermal shock resistance. Characteristics of the coatings under thermal cycling test were studied by optical microscopy, field emission scanning electron microscope (FE-SEM) and energy dispersion spectrum (EDS), X-ray diffraction (XRD). The experimental results show that hardness of the coatings increases, bonding strength decreases slightly with increase of the Cr3C2 content of the coatings. As a result, FM2 coating possesses the best thermal shock resistance, attributing to its better thermal expansion matches and wettability than those of FM3 coating, less oxide rate than that of FM1 coating restraining from cracks formation and propagation in coatings.展开更多
文摘Arc spraying with the cored wires was applied to deposit FeMnCr/Cr3C2 coatings on low carbon steel substrates, namely FM1, FM2 and FM3. Thermal shock resistances of the coatings were investigated to assess the influence of Cr3C2 content on thermal shock resistance. Characteristics of the coatings under thermal cycling test were studied by optical microscopy, field emission scanning electron microscope (FE-SEM) and energy dispersion spectrum (EDS), X-ray diffraction (XRD). The experimental results show that hardness of the coatings increases, bonding strength decreases slightly with increase of the Cr3C2 content of the coatings. As a result, FM2 coating possesses the best thermal shock resistance, attributing to its better thermal expansion matches and wettability than those of FM3 coating, less oxide rate than that of FM1 coating restraining from cracks formation and propagation in coatings.