Reactive fragment enhances lethality by incorporating the defeat mechanisms of kinetic energy and chemical energy into a unitary damage unit. Combined studies on the behavior of reactive fragment initiating covered ex...Reactive fragment enhances lethality by incorporating the defeat mechanisms of kinetic energy and chemical energy into a unitary damage unit. Combined studies on the behavior of reactive fragment initiating covered explosive are performed theoretically and experimentally. The results in- dicate that the response of the covered explosive subjected to reactive fragment is not consistent with the classical shock initiation model. When impacting and penetrating into the covered explosive, the reactive fragment releases great amounts of thermo-chemical energy up to 5. 68 times of its kinetic energy into the explosive due to violent chemical reactions. This impact-induced chemical energy re- lease behavior of the reactive fragment significantly enhances the initiation capability and damage effects on the covered explosive.展开更多
在药型罩上粘附铝隔板是一种新的形成尾翼型爆炸成型弹丸(Explosively Formed Projectile,EFP)的实验方法。通过实验和数值模拟对该方法进行了分析,探讨了形成尾翼的机理。利用有限元分析软件LS-DYNA,对大锥角型、球缺型和弧锥结合型3...在药型罩上粘附铝隔板是一种新的形成尾翼型爆炸成型弹丸(Explosively Formed Projectile,EFP)的实验方法。通过实验和数值模拟对该方法进行了分析,探讨了形成尾翼的机理。利用有限元分析软件LS-DYNA,对大锥角型、球缺型和弧锥结合型3种不同药型罩在采用新方法时形成的尾翼型EFP进行了三维数值模拟分析,并将模拟结果与实验结果进行对比。研究结果表明:3种药型罩均能形成比较明显的尾翼,数值计算结果与实验结果较吻合。该研究为设计尾翼型EFP提供了一种新的参考方法。展开更多
基金Supported by the National Innovation Funds(7130619)
文摘Reactive fragment enhances lethality by incorporating the defeat mechanisms of kinetic energy and chemical energy into a unitary damage unit. Combined studies on the behavior of reactive fragment initiating covered explosive are performed theoretically and experimentally. The results in- dicate that the response of the covered explosive subjected to reactive fragment is not consistent with the classical shock initiation model. When impacting and penetrating into the covered explosive, the reactive fragment releases great amounts of thermo-chemical energy up to 5. 68 times of its kinetic energy into the explosive due to violent chemical reactions. This impact-induced chemical energy re- lease behavior of the reactive fragment significantly enhances the initiation capability and damage effects on the covered explosive.
文摘在药型罩上粘附铝隔板是一种新的形成尾翼型爆炸成型弹丸(Explosively Formed Projectile,EFP)的实验方法。通过实验和数值模拟对该方法进行了分析,探讨了形成尾翼的机理。利用有限元分析软件LS-DYNA,对大锥角型、球缺型和弧锥结合型3种不同药型罩在采用新方法时形成的尾翼型EFP进行了三维数值模拟分析,并将模拟结果与实验结果进行对比。研究结果表明:3种药型罩均能形成比较明显的尾翼,数值计算结果与实验结果较吻合。该研究为设计尾翼型EFP提供了一种新的参考方法。