Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Ov...Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Over the past 40 years, impervious surface areas in China have grown rapidly. However,annual maps of impervious areas in China with high spatial details do not exist during this period. In this paper, we made use of reliable impervious surface mapping algorithms that we published before and the Google Earth Engine(GEE) platform to address this data gap. With available data in GEE, we were able to map impervious surfaces over the entire country circa 1978, and during 1985–2017 at an annual frequency. The 1978 data were at 60-m resolution, while the 1985–2017 data were in 30-m resolution.For the 30-m resolution data, we evaluated the accuracies for 1985, 1990, 1995, 2000, 2005, 2010, and2015. Overall accuracies reached more than 90%. Our results indicate that the growth of impervious surface in China was not only fast but also considerably exceeding the per capita impervious surface area in developed countries like Japan. The 40-year continuous and consistent impervious surface distribution data in China would generate widespread interests in the research and policy-making community. The impervious surface data can be freely downloaded from http://data.ess.tsinghua.edu.cn.展开更多
Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by t...Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by terrain. In such regions, if important at all, to- pographic effects will depend on cultural-historical factors and thus be human-driven (an- thropogenic) rather than natural, except in regions where the general climate or extreme soils limit the occurrence of forests. We used spatial regression modeling to assess the extent to which topographic factors explain forest distribution (presence-absence at a 48x48 m resolu- tion) in a lowland agricultural region (Denmark, 43,075 km2) at regional and landscape scales (whole study area and 10x10 km grid cells, respectively), how landscape-scale for- est-topography relationships vary geographically, and which potential drivers (topographic heterogeneity, forest cover, clay content, coastal/inland location) determine this geographic heterogeneity. Given a moist temperate climate and non-extreme soils all landscapes in Denmark would naturally be largely forest covered, and any topographic relationships will be totally or primarily human-driven. At regional scale, topographic predictors explained only 5% of the distribution of forest. In contrast, the explanatory power of topography varied from 0%-61% at landscape scale, with clear geographic patterning. Explanatory power of topog- raphy at landscape scale was moderately dependent on the potential drivers, with topog- raphic control being strongest in areas with high topographic heterogeneity and little forest cover. However, these conditioning effects were themselves geographically variable. Our findings show that topography by shaping human land-use can affect forest distribution even in flat, lowland regions, but especially via localized, geographically variable effects.展开更多
基金partially supported by the National Research Program of the Ministry of Science and Technology of China(2016YFA0600104)
文摘Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Over the past 40 years, impervious surface areas in China have grown rapidly. However,annual maps of impervious areas in China with high spatial details do not exist during this period. In this paper, we made use of reliable impervious surface mapping algorithms that we published before and the Google Earth Engine(GEE) platform to address this data gap. With available data in GEE, we were able to map impervious surfaces over the entire country circa 1978, and during 1985–2017 at an annual frequency. The 1978 data were at 60-m resolution, while the 1985–2017 data were in 30-m resolution.For the 30-m resolution data, we evaluated the accuracies for 1985, 1990, 1995, 2000, 2005, 2010, and2015. Overall accuracies reached more than 90%. Our results indicate that the growth of impervious surface in China was not only fast but also considerably exceeding the per capita impervious surface area in developed countries like Japan. The 40-year continuous and consistent impervious surface distribution data in China would generate widespread interests in the research and policy-making community. The impervious surface data can be freely downloaded from http://data.ess.tsinghua.edu.cn.
基金economic support from Aarhus University Research Foundationa Center of the Danish National Research Foundation
文摘Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by terrain. In such regions, if important at all, to- pographic effects will depend on cultural-historical factors and thus be human-driven (an- thropogenic) rather than natural, except in regions where the general climate or extreme soils limit the occurrence of forests. We used spatial regression modeling to assess the extent to which topographic factors explain forest distribution (presence-absence at a 48x48 m resolu- tion) in a lowland agricultural region (Denmark, 43,075 km2) at regional and landscape scales (whole study area and 10x10 km grid cells, respectively), how landscape-scale for- est-topography relationships vary geographically, and which potential drivers (topographic heterogeneity, forest cover, clay content, coastal/inland location) determine this geographic heterogeneity. Given a moist temperate climate and non-extreme soils all landscapes in Denmark would naturally be largely forest covered, and any topographic relationships will be totally or primarily human-driven. At regional scale, topographic predictors explained only 5% of the distribution of forest. In contrast, the explanatory power of topography varied from 0%-61% at landscape scale, with clear geographic patterning. Explanatory power of topog- raphy at landscape scale was moderately dependent on the potential drivers, with topog- raphic control being strongest in areas with high topographic heterogeneity and little forest cover. However, these conditioning effects were themselves geographically variable. Our findings show that topography by shaping human land-use can affect forest distribution even in flat, lowland regions, but especially via localized, geographically variable effects.