期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
1
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY courant-friedrichs-lewy(cfl)condition Finite difference(FD)method Local discontinuous Galerkin(DG)method
下载PDF
Stable Runge-Kutta discontinuous Galerkin solver for hypersonic rarefied gaseous flow based on 2D Boltzmann kinetic model equations
2
作者 Wei SU Zhenyu TANG +1 位作者 Bijiao HE Guobiao CAI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第3期343-362,共20页
A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is k... A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is kept by accuracy of velocity discretization, conservative calculation of the discrete collision relaxation term, and a limiter. By keeping the time step smaller than the local mean collision time and forcing positivity values of velocity distribution functions on certain points, the limiter can preserve positivity of solutions to the cell average velocity distribution functions. Verification is performed with a normal shock wave at a Mach number 2.05, a hypersonic flow about a two-dimensional(2D) cylinder at Mach numbers 6.0 and 12.0, and an unsteady shock tube flow. The results show that, the scheme is stable and accurate to capture shock structures in steady and unsteady hypersonic rarefied gaseous flows. Compared with two widely used limiters, the current limiter has the advantage of easy implementation and ability of minimizing the influence of accuracy of the original RKDG method. 展开更多
关键词 model equation hypersonic flow discontinuous Galerkin (DG) conservative discretization positivity-preserving limiter courant-friedrichs-lewy (cfl) condition
下载PDF
基于卷积滤波的谱元法在长时程波场模拟中的应用
3
作者 任骏声 张怀 +2 位作者 周元泽 张振 石耀霖 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第5期1832-1838,共7页
地震波波场数值模拟是深入认识复杂地下介质的重要手段.谱元法兼顾了有限元方法的传统优势,并提高了数值精度和稳定性,已成为目前地震波波场数值模拟中最常用的方法之一.随着超大规模并行计算的普及和发展,高分辨模拟所需的网格尺寸越... 地震波波场数值模拟是深入认识复杂地下介质的重要手段.谱元法兼顾了有限元方法的传统优势,并提高了数值精度和稳定性,已成为目前地震波波场数值模拟中最常用的方法之一.随着超大规模并行计算的普及和发展,高分辨模拟所需的网格尺寸越来越小,网格规模越来越大,导致长时程模拟的大步长需求越来越高,成为倍受关注的研究热点.区别于传统的保结构算法,本文采用时间频散变换对时间离散引起的误差进行补偿,并引入空间滤波用于打破CFL(Courant-Friedrichs-Lewy)条件对时间采样间隔的限制.为了克服谱元法中因为非均匀空间采样点引起的滤波频谱计算难题,本文采用空间卷积滤波替换传统频率域滤波,有效的降低了算法的计算需求.该滤波方法也适用于复杂起伏模型的波场模拟.将本文方法用于保结构算法,并针对四阶辛Nyström方法进行了测试,显著增大了四阶辛Nyström方法的时间采样步长.新方法可以有效的用于地球自由振荡的模拟以及其他需要长时程数值模拟的工作中. 展开更多
关键词 长时程波场模拟 卷积滤波 谱元法 cfl条件 数值稳定性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部