设计了一个圆口径串并联混合馈电的毫米波微带天线阵列。该天线采用矩形微带工字型缝隙贴片耦合馈电的方法展宽带宽。为了有效利用天线口径面积,减小网络复杂度,选取串联微带天线阵列形式。同时为了展宽带宽,根据设计的圆形口径阵列,将...设计了一个圆口径串并联混合馈电的毫米波微带天线阵列。该天线采用矩形微带工字型缝隙贴片耦合馈电的方法展宽带宽。为了有效利用天线口径面积,减小网络复杂度,选取串联微带天线阵列形式。同时为了展宽带宽,根据设计的圆形口径阵列,将部分子阵采用串并联混合馈电的形式,得到带宽为5%的毫米波微带天线阵列。仿真表明,该天线在工作频带内增益大于30.6 d Bi,波束宽度为4.0°×3.5°,副瓣电平低于–13 d B。该天线阵面与网络配合,可以实现多波束或相控阵的功能。展开更多
<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to th...<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to the non-radiating edges of a radiating element is presented. The experimental results show that two element slot-loaded gap-coupled microstrip array antenna gives a ?10 dB return loss band-width for three bands. The design specifications, radiation patterns and gain of the proposed antennas are presented and described. </div>展开更多
提出了一种可重构的临近耦合印刷偶极子天线阵。其通过控制每个振子的间距和振子偏移中心馈线的距离实现方向图的改变,提出的可重构天线阵,将形成不同方向图的偶极子天线阵嵌套排布,并通过pin管开关切换不同的偶极子辐射单元组,从而实...提出了一种可重构的临近耦合印刷偶极子天线阵。其通过控制每个振子的间距和振子偏移中心馈线的距离实现方向图的改变,提出的可重构天线阵,将形成不同方向图的偶极子天线阵嵌套排布,并通过pin管开关切换不同的偶极子辐射单元组,从而实现天线方向图的重构,改变天线的最大辐射方向。仿真结果表明在9.8 GHz的中心频点上,该天线可实现最大辐射方向在0°和40°上切换:波束指向为0°方向时,最大增益为12 d Bi;为40°时,最大增益为8.7 d Bi,两种工作状态下天线输入端s11均优于-30 d B,匹配良好。展开更多
As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour e...As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.展开更多
文摘设计了一个圆口径串并联混合馈电的毫米波微带天线阵列。该天线采用矩形微带工字型缝隙贴片耦合馈电的方法展宽带宽。为了有效利用天线口径面积,减小网络复杂度,选取串联微带天线阵列形式。同时为了展宽带宽,根据设计的圆形口径阵列,将部分子阵采用串并联混合馈电的形式,得到带宽为5%的毫米波微带天线阵列。仿真表明,该天线在工作频带内增益大于30.6 d Bi,波束宽度为4.0°×3.5°,副瓣电平低于–13 d B。该天线阵面与网络配合,可以实现多波束或相控阵的功能。
文摘<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to the non-radiating edges of a radiating element is presented. The experimental results show that two element slot-loaded gap-coupled microstrip array antenna gives a ?10 dB return loss band-width for three bands. The design specifications, radiation patterns and gain of the proposed antennas are presented and described. </div>
文摘提出了一种可重构的临近耦合印刷偶极子天线阵。其通过控制每个振子的间距和振子偏移中心馈线的距离实现方向图的改变,提出的可重构天线阵,将形成不同方向图的偶极子天线阵嵌套排布,并通过pin管开关切换不同的偶极子辐射单元组,从而实现天线方向图的重构,改变天线的最大辐射方向。仿真结果表明在9.8 GHz的中心频点上,该天线可实现最大辐射方向在0°和40°上切换:波束指向为0°方向时,最大增益为12 d Bi;为40°时,最大增益为8.7 d Bi,两种工作状态下天线输入端s11均优于-30 d B,匹配良好。
基金This work is supported by the National Science and Technology Major Project of China(Grant No.2015ZX04005006)the Science and Technology Major Project of Zhongshan City,China(Grant Nos.2016F2FC0006 and 2018A10018).
文摘As the traditional cross-coupling control method cannot meet the requirements for tracking accuracy and contour control accuracy in large curvature positions, an integrated control strategy of cross-coupling contour error compensation based on chord error constraint, which consists of a cross-coupling controller and an improved position error compensator, is proposed. To reduce the contour error, a PI-type cross-coupling controller is designed, with its stability being analyzed by using the contour error transfer function. Moreover, a feed rate regulator based on the chord error constraint is proposed, which performs speed planning with the maximum feed rate allowed by the large curvature position as the constraint condition, so as to meet the requirements of large curvature positions for the chord error. Besides, an improved position error compensation method is further presented by combining the feed rate regulator with the position error compensator, which improves the tracking accuracy via the advance compensation of tracking error. The biaxial experimental results of non-uniform rational B-splines curves indicate that the proposed integrated control strategy can significantly improve the tracking and contour control accuracy in biaxial contour following tasks.