Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction....Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.展开更多
By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation,the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation,broaden the freque...By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation,the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation,broaden the frequency bandwidth,and improve both the resolution and fidelity of the seismic data.It is thus widely used in industry.However,it is difficult to ensure good coupling of the geophones with the seabed because of the impact of ocean flow,seafloor topography,and field operations;therefore,geophone data are seriously affected by the transfer function of the geophone-seabed coupling system.As a result,geophone data frequently have low signal-to-noise ratios(S/N),which causes large differences in amplitude,frequency,and phases between geophone and hydrophone data that severely affect dual-sensor summation.In contrast,the hydrophone detects changes in brine pressure and has no coupling issues with the seabed;thus,hydrophone data always have good S/N.First,in this paper,the mathematical expression of the transfer function between geophone and seabed is presented.Second,the transfer function of the geophone-seabed is estimated using hydrophone data as reference traces,and finally,the coupling correction based on the estimated transfer function is implemented.Using this processing,the amplitude and phase differences between geophone and hydrophone data are removed,and the S/N of the geophone data are improved.Synthetic and real data examples then show that our method is feasible and practical.展开更多
基金supported by the National Natural Science Foundation of China(No.62173281)the Natural Science Foundation of Sichuan Province(No.23ZDYF0734 and No.2023NSFSC1436)the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(No.18kftk03).
文摘Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.
文摘By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation,the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation,broaden the frequency bandwidth,and improve both the resolution and fidelity of the seismic data.It is thus widely used in industry.However,it is difficult to ensure good coupling of the geophones with the seabed because of the impact of ocean flow,seafloor topography,and field operations;therefore,geophone data are seriously affected by the transfer function of the geophone-seabed coupling system.As a result,geophone data frequently have low signal-to-noise ratios(S/N),which causes large differences in amplitude,frequency,and phases between geophone and hydrophone data that severely affect dual-sensor summation.In contrast,the hydrophone detects changes in brine pressure and has no coupling issues with the seabed;thus,hydrophone data always have good S/N.First,in this paper,the mathematical expression of the transfer function between geophone and seabed is presented.Second,the transfer function of the geophone-seabed is estimated using hydrophone data as reference traces,and finally,the coupling correction based on the estimated transfer function is implemented.Using this processing,the amplitude and phase differences between geophone and hydrophone data are removed,and the S/N of the geophone data are improved.Synthetic and real data examples then show that our method is feasible and practical.