We revisit how we utilized how Weber in 1961 initiated the process of quantization of early universe fields to the issue of what was for a wormhole mouth. While the wormhole models are well understood, there is not su...We revisit how we utilized how Weber in 1961 initiated the process of quantization of early universe fields to the issue of what was for a wormhole mouth. While the wormhole models are well understood, there is not such a consensus as to how the mouth of a wormhole could generate signals. We try to develop a model for doing so and then revisit it, the Wormhole while considering a Tokamak model we used in a different publication as a way of generating GW, and Gravitons.展开更多
We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as o...We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. Finally, after doing this, we go to the Energy as E also ~ Temperature, and from there use E (energy) as ~ signal frequency. This gives us an idea of how to estimate frequency generated at the mouth of a wormhole.展开更多
We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as o...We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. We review what could be a game changer, <i>i.e.</i> magnetic black holes as brought up by Maldacena, in early 2021, at the mouth of the wormhole, and compare this with more standard black holes, at the mouth of a wormhole, while considering also the Bierman battery effect of an accreditation disk moving charges around a black hole as yet another way to have signals generated. The Maldacena article has good order of estimate approximations as to the strength of a magnetic monopole which we can use, and we also will go back to the signal processing effects which may be engendered by the Weber quantization of a wormhole to complete our model.展开更多
We reduplicate the Book “Dark Energy” by M. Li, X.-D. Li, and Y. Wang, zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wavefunction just prior to the entrance of “gr...We reduplicate the Book “Dark Energy” by M. Li, X.-D. Li, and Y. Wang, zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wavefunction just prior to the entrance of “gravitons” to a small region of space-time prior to a nonsingular start to the universe. We compare this to a solution which worked out using Klauder Enhanced quantization, for the same given problem. The solution of the first Cosmological Constant problem relies upon the geometry of the multiverse generalization of CCC cosmology which is explained in this paper. The second solution used involves Klauder enhanced quantization. We look at energy given by our methods and compare and contrast it with the negative energy of the Rosen model for a mini sub-universe and estimate GW frequencies.展开更多
We present a class of new exact solutions in string cosmology theory, and the solutions describe a homogeneous but anisotropie plane-symmetric string universe within the framework of Bianehi type-I cosmology. Some sol...We present a class of new exact solutions in string cosmology theory, and the solutions describe a homogeneous but anisotropie plane-symmetric string universe within the framework of Bianehi type-I cosmology. Some solutions previously discussed are included in the class of exact solutions as the special cases. Our result may provide further quantitative description and theoretical basis for the string cosmology model.展开更多
We take the results where we reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, zero-point energy calculation, as folded in with the Klauder methodology, as given in a prior publication. From there w...We take the results where we reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, zero-point energy calculation, as folded in with the Klauder methodology, as given in a prior publication. From there we first access the Rosen solution to a mini universe energy to ascertain an energy value of t, the pre-inflationary near singularity, then access what would be needed as to inject information into our universe. We then close with an argument by Narilkar as to a quantum bound on the Einstein-Hilbert action integral, so as to obtain quantum Gravity. Narlikar omits the cosmological constant. We keep it in, for our overall conclusion about the cosmological constant and its relevance to Quantum gravity.展开更多
Cosmologies in the making一书是由弗雷德里克·巴特写成于1987年。该书是对新几内亚内部,即OK山区的文化变异的一种生成途径的民族志研究。这本书虽就短短的88页,但是却是人类学民族志中非常重要的一部著作。作者在这部著作中阐述...Cosmologies in the making一书是由弗雷德里克·巴特写成于1987年。该书是对新几内亚内部,即OK山区的文化变异的一种生成途径的民族志研究。这本书虽就短短的88页,但是却是人类学民族志中非常重要的一部著作。作者在这部著作中阐述了OK山区的成人礼、宇宙观及他的知识人类学和过程论的观点。本文对作者、写作背景以及主要内容进行简单的介绍,并从过程论的视角和与其他著名人类学家进行比较来简单评论弗雷德里克·巴特的人类学思想。展开更多
Depositional sequences may be distinguished into six ranks of units as giga-, mega-, meso-, ortho-, sub- and micro-sequence, and are interpreted to be formed during the eustatic cycles with time-intervals of 500-6000 ...Depositional sequences may be distinguished into six ranks of units as giga-, mega-, meso-, ortho-, sub- and micro-sequence, and are interpreted to be formed during the eustatic cycles with time-intervals of 500-6000 Ma, 60-120 Ma, 30-40 Ma, 2-5 Ma, 0.1-0.4 Ma and 0.02-0.04 Ma respectively. All of them are thought to be essentially related to cosmological cycles, except the megasequence which may be caused by the long-term geothermal cycles on cratons. We deem that the depositional sequences, though often influenced variably by local tectonics and other factors, are primarily global and periodic in nature. We also hold that as one of the planets within the Galaxy, the earth must have been affected in various ways by other asteroids, and that the depositional sequences are merely the responses of the hydrosphere to the cosmological cycles in sedimentation.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss differen...5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.展开更多
By adopting the differential age method, we select 17 832 luminous red galaxies from the Sloan Digital Sky Survey Data Release Seven covering redshift 0 〈 z 〈 0.4 to measure the Hubble parameter. Using the full spec...By adopting the differential age method, we select 17 832 luminous red galaxies from the Sloan Digital Sky Survey Data Release Seven covering redshift 0 〈 z 〈 0.4 to measure the Hubble parameter. Using the full spectrum fitting package UZySS, these spectra are reduced with single stellar population models and optimal age information from our selected sample is derived. With the decreasing age-redshift relation, four new observational H(z) data (OHD) points are obtained, which are H(z) = 69.0 ± 19.6 km s^-1 Mpc^-1 at z = 0.07, H(z) = 68.6± 26.2 km s^-1 Mpc^-1 at z = 0.12, H(z)=72.9 ± 29.6 km s^-1 Mpc^-1 at z = 0.2 and H(z)=88.8 ± 36.6 km s^-1 Mpc^-1 at z = 0.28, respectively. Combined with 21 other available OHD data points, the performance of the constraint on both flat and non-flat ACDM models is presented.展开更多
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these re...This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.展开更多
In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of t...In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of the evolution of space-time as well as an equation of state that retains all the infinitesimal terms. We find an explanation of the Hubble tension H<sub>0</sub>. Indeed, we have seen that this constant depends on the transceiver pair which can vary from the lowest observable value, from photons of the CMB (theoretical [km/s/Mpc]) to increasingly higher values depending on the earlier origin of the formation of the observed galaxy or cluster (ETG ~0.3 [Gy], ~74 [km/s/Mpc]). We have produced a theoretical table of the values of the constant according to the possible pairs of transmitter/receiver in the case where these galaxies follow the Hubble flow without large disturbance. The calculated theoretical values of the constant are in the order of magnitude of all values mentioned in past studies. Subsequently, we applied the models to 9 galaxies and COMA cluster and found that the models predict acceptable values of their distances and Hubble constant since these galaxies mainly follow the Hubble flow rather than the effects of a galaxy cluster or a group of clusters. In conclusion, we affirm that this Hubble tension does not really exist and it is rather the understanding of the meaning of this constant that is questioned.展开更多
The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ...The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.展开更多
This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem....This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.展开更多
A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation...A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.展开更多
The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and o...The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].展开更多
This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This per...This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This perspective challenges the conventional Big Bang theory, particularly concerning dark matter, the expansion of the universe, and the interpretation of phenomena such as gravitational waves.展开更多
In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according ...In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.展开更多
文摘We revisit how we utilized how Weber in 1961 initiated the process of quantization of early universe fields to the issue of what was for a wormhole mouth. While the wormhole models are well understood, there is not such a consensus as to how the mouth of a wormhole could generate signals. We try to develop a model for doing so and then revisit it, the Wormhole while considering a Tokamak model we used in a different publication as a way of generating GW, and Gravitons.
文摘We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. Finally, after doing this, we go to the Energy as E also ~ Temperature, and from there use E (energy) as ~ signal frequency. This gives us an idea of how to estimate frequency generated at the mouth of a wormhole.
文摘We utilize how Weber in 1961 initiated the process of quantization of early universe fields to the problem of what may be emitted at the mouth of a wormhole. While the wormhole models are well developed, there is as of yet no consensus as to how, say GW or other signals from a wormhole mouth could be quantized or made to be in adherence to a procedure Weber cribbed from Feynman, in 1961. In addition, we utilize an approximation for the Hubble parameter parameterized from Temperature using Sarkar’s H ~ Temperature relations, as given in the text. We review what could be a game changer, <i>i.e.</i> magnetic black holes as brought up by Maldacena, in early 2021, at the mouth of the wormhole, and compare this with more standard black holes, at the mouth of a wormhole, while considering also the Bierman battery effect of an accreditation disk moving charges around a black hole as yet another way to have signals generated. The Maldacena article has good order of estimate approximations as to the strength of a magnetic monopole which we can use, and we also will go back to the signal processing effects which may be engendered by the Weber quantization of a wormhole to complete our model.
文摘We reduplicate the Book “Dark Energy” by M. Li, X.-D. Li, and Y. Wang, zero-point energy calculation with an unexpected “length” added to the “width” of a graviton wavefunction just prior to the entrance of “gravitons” to a small region of space-time prior to a nonsingular start to the universe. We compare this to a solution which worked out using Klauder Enhanced quantization, for the same given problem. The solution of the first Cosmological Constant problem relies upon the geometry of the multiverse generalization of CCC cosmology which is explained in this paper. The second solution used involves Klauder enhanced quantization. We look at energy given by our methods and compare and contrast it with the negative energy of the Rosen model for a mini sub-universe and estimate GW frequencies.
基金Supported by the National Natural Science Foundation of China under Grant No 10575140 the National Basic Research Programme of China under Grant No 2003CB716300, the Foundation of China Academy of Engineering Physics, and the National Science Foundation of Chongqing under Grant No 8562.
文摘We present a class of new exact solutions in string cosmology theory, and the solutions describe a homogeneous but anisotropie plane-symmetric string universe within the framework of Bianehi type-I cosmology. Some solutions previously discussed are included in the class of exact solutions as the special cases. Our result may provide further quantitative description and theoretical basis for the string cosmology model.
文摘We take the results where we reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, zero-point energy calculation, as folded in with the Klauder methodology, as given in a prior publication. From there we first access the Rosen solution to a mini universe energy to ascertain an energy value of t, the pre-inflationary near singularity, then access what would be needed as to inject information into our universe. We then close with an argument by Narilkar as to a quantum bound on the Einstein-Hilbert action integral, so as to obtain quantum Gravity. Narlikar omits the cosmological constant. We keep it in, for our overall conclusion about the cosmological constant and its relevance to Quantum gravity.
文摘Cosmologies in the making一书是由弗雷德里克·巴特写成于1987年。该书是对新几内亚内部,即OK山区的文化变异的一种生成途径的民族志研究。这本书虽就短短的88页,但是却是人类学民族志中非常重要的一部著作。作者在这部著作中阐述了OK山区的成人礼、宇宙观及他的知识人类学和过程论的观点。本文对作者、写作背景以及主要内容进行简单的介绍,并从过程论的视角和与其他著名人类学家进行比较来简单评论弗雷德里克·巴特的人类学思想。
基金This paper is an outcome of the research programof sequence stratigraphy (SSLC) supported by the Stateac~sinn of ScienCe and
文摘Depositional sequences may be distinguished into six ranks of units as giga-, mega-, meso-, ortho-, sub- and micro-sequence, and are interpreted to be formed during the eustatic cycles with time-intervals of 500-6000 Ma, 60-120 Ma, 30-40 Ma, 2-5 Ma, 0.1-0.4 Ma and 0.02-0.04 Ma respectively. All of them are thought to be essentially related to cosmological cycles, except the megasequence which may be caused by the long-term geothermal cycles on cratons. We deem that the depositional sequences, though often influenced variably by local tectonics and other factors, are primarily global and periodic in nature. We also hold that as one of the planets within the Galaxy, the earth must have been affected in various ways by other asteroids, and that the depositional sequences are merely the responses of the hydrosphere to the cosmological cycles in sedimentation.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.
基金supported by the National Natural Science Foundation of China
文摘By adopting the differential age method, we select 17 832 luminous red galaxies from the Sloan Digital Sky Survey Data Release Seven covering redshift 0 〈 z 〈 0.4 to measure the Hubble parameter. Using the full spectrum fitting package UZySS, these spectra are reduced with single stellar population models and optimal age information from our selected sample is derived. With the decreasing age-redshift relation, four new observational H(z) data (OHD) points are obtained, which are H(z) = 69.0 ± 19.6 km s^-1 Mpc^-1 at z = 0.07, H(z) = 68.6± 26.2 km s^-1 Mpc^-1 at z = 0.12, H(z)=72.9 ± 29.6 km s^-1 Mpc^-1 at z = 0.2 and H(z)=88.8 ± 36.6 km s^-1 Mpc^-1 at z = 0.28, respectively. Combined with 21 other available OHD data points, the performance of the constraint on both flat and non-flat ACDM models is presented.
文摘This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.
文摘In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of the evolution of space-time as well as an equation of state that retains all the infinitesimal terms. We find an explanation of the Hubble tension H<sub>0</sub>. Indeed, we have seen that this constant depends on the transceiver pair which can vary from the lowest observable value, from photons of the CMB (theoretical [km/s/Mpc]) to increasingly higher values depending on the earlier origin of the formation of the observed galaxy or cluster (ETG ~0.3 [Gy], ~74 [km/s/Mpc]). We have produced a theoretical table of the values of the constant according to the possible pairs of transmitter/receiver in the case where these galaxies follow the Hubble flow without large disturbance. The calculated theoretical values of the constant are in the order of magnitude of all values mentioned in past studies. Subsequently, we applied the models to 9 galaxies and COMA cluster and found that the models predict acceptable values of their distances and Hubble constant since these galaxies mainly follow the Hubble flow rather than the effects of a galaxy cluster or a group of clusters. In conclusion, we affirm that this Hubble tension does not really exist and it is rather the understanding of the meaning of this constant that is questioned.
文摘The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.
文摘This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe.
文摘A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.
文摘The Hypersphere World-Universe Model (WUM) provides a mathematical framework that allows calculating the primary cosmological parameters of the World which are in good agreement with the most recent measurements and observations. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the World and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;the concentration of intergalactic plasma and time delay of Fast Radio Bursts. Additionally, the model predicts masses of dark matter particles, photons, and neutrinos;proposes new types of particle interactions (Super Weak and Extremely Weak);shows inter-connectivity of primary cosmological parameters of the World. WUM proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values. This paper is the summary of the mathematical results obtained in [1]-[4].
文摘This article explores the dead universe theory as a novel interpretation for the origin and evolution of the universe, suggesting that our cosmos may have originated from the remnants of a preceding universe. This perspective challenges the conventional Big Bang theory, particularly concerning dark matter, the expansion of the universe, and the interpretation of phenomena such as gravitational waves.
文摘In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.