Beginning from the premise that the universe is static, and that the cosmological redshift is due to a nonconservative tired light effect, the following examines evidence supporting the prediction that photons will pr...Beginning from the premise that the universe is static, and that the cosmological redshift is due to a nonconservative tired light effect, the following examines evidence supporting the prediction that photons will progressively blueshift when transiting through the gravity wells of galaxies, galaxy clusters, and superclusters. The presence of such a nonvelocity blueshift effect is seen to make a substantial contribution to Virgo cluster galaxy spectra, sufficient to dramatically decrease the cluster’s velocity dispersion and assessed virial mass and eliminate the need to assume the presence of large quantities of dark matter. The effect is also shown to account for the Fingers-of-God effect and Kaiser pancaking effect seen when the spectra of cluster galaxies are plotted in redshift space. The opposite effect, excessive redshifting of photons passing through cosmic voids is able to explain void elongation in redshift space, and also the subnormal luminosity of void galaxies. The proposed cosmological blueshifting phenomenon also explains the downturn of the slope of the Hubble Flow in the vicinity of the Local Group which projects a negative apparent velocity for photons propagating near the Milky Way. It also offers an explanation for the blueshift of the Andromeda galaxy spectra and for Arp’s findings that the spectra of primary galaxies in a cluster tend to be blueshifted relative to their companion galaxies. These photon energy phenomena are anticipated by the physics of subquantum kinetics which predicts that photons traversing long distances through intergalactic space should undergo nonconservative tired-light redshifting, and that photons passing through gravity potential wells should undergo progressive blueshifting. The latter effect may be visualized as a negative nonvelocity Hubble constant.展开更多
We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>dũintroduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition ...We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>dũintroduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition from the neutral pion superposition of two free mesons, d<sub>d</sub>~</sup> and uũ, to the tetrahedron geometry with optional two chiral states may be the symmetry breaking of the QCD ground state. The u<sub>d</sub>~</sup>dũtetrahedron mass may be calculated by measuring the β decay rate variability. We assume that electrons and positrons are composite particle exotic tetraquarks, dũd<sub>d</sub>~</sup> for the electrons and u<sub>d</sub>~</sup>d<sub>d</sub>~</sup> for the positrons and confined by the strong force. We propose that the QCD tetrahedrons play a central role in electron pairing mechanism in both chemical bond forming and superconductor Cooper pairs. We propose a hypothesis where the QCD ground state tetrahedrons play a central role in low energy physics where quark exchange reactions between particles and the QCD tetrahedrons via gluon junctions transfer all the forces. The QCD ground state u<sub>d</sub>~</sup>dũtetrahedrons hypothesis provides a symmetry breaking and a mass gap may be created by the ground state QCD tetrahedrons Bose-Einstein condensate.展开更多
文摘Beginning from the premise that the universe is static, and that the cosmological redshift is due to a nonconservative tired light effect, the following examines evidence supporting the prediction that photons will progressively blueshift when transiting through the gravity wells of galaxies, galaxy clusters, and superclusters. The presence of such a nonvelocity blueshift effect is seen to make a substantial contribution to Virgo cluster galaxy spectra, sufficient to dramatically decrease the cluster’s velocity dispersion and assessed virial mass and eliminate the need to assume the presence of large quantities of dark matter. The effect is also shown to account for the Fingers-of-God effect and Kaiser pancaking effect seen when the spectra of cluster galaxies are plotted in redshift space. The opposite effect, excessive redshifting of photons passing through cosmic voids is able to explain void elongation in redshift space, and also the subnormal luminosity of void galaxies. The proposed cosmological blueshifting phenomenon also explains the downturn of the slope of the Hubble Flow in the vicinity of the Local Group which projects a negative apparent velocity for photons propagating near the Milky Way. It also offers an explanation for the blueshift of the Andromeda galaxy spectra and for Arp’s findings that the spectra of primary galaxies in a cluster tend to be blueshifted relative to their companion galaxies. These photon energy phenomena are anticipated by the physics of subquantum kinetics which predicts that photons traversing long distances through intergalactic space should undergo nonconservative tired-light redshifting, and that photons passing through gravity potential wells should undergo progressive blueshifting. The latter effect may be visualized as a negative nonvelocity Hubble constant.
文摘We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>dũintroduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition from the neutral pion superposition of two free mesons, d<sub>d</sub>~</sup> and uũ, to the tetrahedron geometry with optional two chiral states may be the symmetry breaking of the QCD ground state. The u<sub>d</sub>~</sup>dũtetrahedron mass may be calculated by measuring the β decay rate variability. We assume that electrons and positrons are composite particle exotic tetraquarks, dũd<sub>d</sub>~</sup> for the electrons and u<sub>d</sub>~</sup>d<sub>d</sub>~</sup> for the positrons and confined by the strong force. We propose that the QCD tetrahedrons play a central role in electron pairing mechanism in both chemical bond forming and superconductor Cooper pairs. We propose a hypothesis where the QCD ground state tetrahedrons play a central role in low energy physics where quark exchange reactions between particles and the QCD tetrahedrons via gluon junctions transfer all the forces. The QCD ground state u<sub>d</sub>~</sup>dũtetrahedrons hypothesis provides a symmetry breaking and a mass gap may be created by the ground state QCD tetrahedrons Bose-Einstein condensate.