Gamma ray source detection above 30 TeV is an encouraging approach for finding galactic cosmic ray sources. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulati...Gamma ray source detection above 30 TeV is an encouraging approach for finding galactic cosmic ray sources. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100 GeV. In order to target those goals, a large air shower particle detector array of 1 km^2 (the LHAASO project) at 4300 m a.s.l, is proposed, By adding two MagicⅡ- type telescopes in the array as proposed, LHAASO will be enhanced in source morphologic investigation power. The proposed array will be utilized also for energy spectrum measurement for individual cosmic ray species above 30 TeV. By re-configuring the wide field of view telescopes into fluorescence light detector array, the aperture of the detector array can be enlarged to cover an energy region above 100 PeV where the second knee is located. Cosmic ray spectrum and composition will be measured in order to transfer an energy scale to ultra high energy cosmic ray experiments.展开更多
COSMIC(Constellation Observation System for Meteorology,Ionosphere and Climate)每天可以提供全球2000~3000条从40 km高空到近地面的大气温、压、湿的廓线资料,有效地弥补了常规探空资料在时间和空间上分辨率的不足。通过对2008年...COSMIC(Constellation Observation System for Meteorology,Ionosphere and Climate)每天可以提供全球2000~3000条从40 km高空到近地面的大气温、压、湿的廓线资料,有效地弥补了常规探空资料在时间和空间上分辨率的不足。通过对2008年5月20日至2008年11月26日COSMIC资料与L波段探空秒数据进行比对,结果表明,在10 km高度以下,COSMIC反演的湿廓线资料与L波段探空数据偏差较小,温度偏差为-0.5℃,均方根误差为1.5℃;折射率偏差为1.4N,均方根误差为5.9N;气压偏差为2.0 hPa,均方根误差为4.7 hPa;水汽压偏差为0.1 hPa,均方根误差为1.1 hPa。COSMIC干廓线资料与L波段探空相比,在10~30 km高度内,温度偏差为-0.3℃,均方根误差为1.9℃;折射率偏差为0.4N,均方根误差为0.9N;气压偏差为1.4 hPa,均方根误差为2.6 hPa。表明COSMIC资料既具有较高的时空分辨率,又具有较好的精度,在数值模式中具有重要的潜在应用。展开更多
为了获得足够多的地面掩星点资料,用于全球和局部天气预报和大气研究,1997年中国台湾地区和美国联合制定了耗资1亿美元的COSMIC(Constellation Observing System for Meteorology,Ionosphere and Climate)计划。COSMIC是气象、电离层和...为了获得足够多的地面掩星点资料,用于全球和局部天气预报和大气研究,1997年中国台湾地区和美国联合制定了耗资1亿美元的COSMIC(Constellation Observing System for Meteorology,Ionosphere and Climate)计划。COSMIC是气象、电离层和气候星座观测系统,它包括卫星、地面数据接受和卫星控制站、数据分析中心和数字通讯网络,计划于2005年开始实施。介绍了COSMIC计划产出的历史背景、科学任务及其整个系统的组成,井针对COSMIC和其它LEO(低地球轨道)星座计划,提出了我们应做和正在做的研究工作。展开更多
In this study,the correlation between Tm,a key variable in GNSS water vapor inversion,and surface temperature(Ts)was calculated on a global scale based on the global geodetic observing system(GGOS)atmosphere Tmdata an...In this study,the correlation between Tm,a key variable in GNSS water vapor inversion,and surface temperature(Ts)was calculated on a global scale based on the global geodetic observing system(GGOS)atmosphere Tmdata and European centre for medium-range weather forecasts(ECMWF)surface temperature data.The results show that their correlation is mainly affected by latitudes,and the correlation is stronger at high latitudes and weaker at low latitudes.Although the correlation is relatively weak in the tropic areas,the temperature changes so little in a year in these areas that we can still achieve good Tmresults by linear regression model.Based on these facts,‘‘GGOS atmosphere’’Tmdata and ECMWF Tsdata from 2005 to2011 were used to establish the global latitude-related linear regression model.The new model has root mean square error(RMSE)of 3.2,3.3,and 4.4 K,respectively,compared with respect to the‘‘GGOS atmosphere’’data,COSMIC data,and radiosonde data and is more accurate than the Bevis Tm–Tsrelationship.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) appro...The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.展开更多
Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine t...Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.展开更多
以全球无线电探空数据和美国环境预报中心(National Centers for Environmental Prediction,NCEP)预报模式为参照,对COSMIC数据分析与管理中心(COSMIC Data Analysis and Archive Center,CDAAc)提供的2007—06-01~2007—06—30...以全球无线电探空数据和美国环境预报中心(National Centers for Environmental Prediction,NCEP)预报模式为参照,对COSMIC数据分析与管理中心(COSMIC Data Analysis and Archive Center,CDAAc)提供的2007—06-01~2007—06—30的气象、电离层与气候星座观测系统(the constellation observing system for meteorology,Ionosphere,and climate,COSMIC)的GPS掩星折射指数廓线进行了统计验证。结果表明,掩星廓线的精度在高纬度地区最好,在低纬度地区最差。中、低纬度带掩星廓线相对于探空廓线有系统性相对偏差,该偏差在掩星廓线与NCEP预报廓线的比较中不存在,说明探空数据的质量是造成这种偏差的主要原因,这可能与不同地区所采用的无线电探空仪的性能有关。展开更多
The ^(25)Mg(p,γ)^(26)Al reaction plays an important role in the study of cosmic 1.809 MeV γ-ray as a signature of ongoing nucleosynthesis in the Galaxy.At astrophysical temperature around 0.1 GK,the ^(25)Mg(p,γ)^(2...The ^(25)Mg(p,γ)^(26)Al reaction plays an important role in the study of cosmic 1.809 MeV γ-ray as a signature of ongoing nucleosynthesis in the Galaxy.At astrophysical temperature around 0.1 GK,the ^(25)Mg(p,γ)^(26)Al reaction rates are dominated by the 92 keV resonance capture process.We report a precise measurement of the 92 keV ^(25)Mg(p,γ)^(26)Al resonance in the day-one experiment at Jinping Underground Nuclear Astrophysics experiment(JUNA)facility in the China Jinping Underground Laboratory(CJPL).The resonance strength and ground state feeding factor are determined to be 3.8±0.3×10^(-10) eV and 0:660:04,respectively.The results are in agreement with those reported in the previous direct underground measurement within uncertainty,but with significantly reduced uncertainties.Consequently,we recommend new ^(25)Mg(p,γ)^(26)Al reaction rates which are by a factor of 2.4 larger than those adopted in REACLIB database at the temperature around 0.1 GK.The new results indicate higher production rates of ^(26g)Al and the cosmic 1.809 MeV γ-ray.The implication of the new rates for the understanding of other astrophysical situations is also discussed.展开更多
The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary par...The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10^-10/(cm2.s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.展开更多
针对COSMIC(Constellation Observation System of Meteorology Ionosphere and Climate)掩星反演的大气温度和水汽压二级资料,利用常规探空观测和NCEP(National Centers for Environmental Prediction)分析资料分别进行质量检验分析,...针对COSMIC(Constellation Observation System of Meteorology Ionosphere and Climate)掩星反演的大气温度和水汽压二级资料,利用常规探空观测和NCEP(National Centers for Environmental Prediction)分析资料分别进行质量检验分析,以揭示反演资料质量的海陆差异、随纬度和高度变化等三维空间特征。结果显示:我国区域反演资料的温度略低于探空观测与NCEP分析资料,温度与水汽压相对于检验资料的均方根误差较小;全球范围内,反演大气温湿资料的质量随高度和纬度的不同而存在明显差异,而且海洋和陆地上质量的水平和垂直分布特征也存在显著不同。总体上看,COSMIC反演大气温湿资料具有良好的可靠性与精确度,可作为我国数值预报资料同化的新资料,反演温湿资料的质量特征也可为COSMIC资料同化的质量控制和垂直稀疏化方案的设计提供科学依据。展开更多
基金Supported by Knowledge Innovation Fund (U-526) of IHEP,China
文摘Gamma ray source detection above 30 TeV is an encouraging approach for finding galactic cosmic ray sources. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100 GeV. In order to target those goals, a large air shower particle detector array of 1 km^2 (the LHAASO project) at 4300 m a.s.l, is proposed, By adding two MagicⅡ- type telescopes in the array as proposed, LHAASO will be enhanced in source morphologic investigation power. The proposed array will be utilized also for energy spectrum measurement for individual cosmic ray species above 30 TeV. By re-configuring the wide field of view telescopes into fluorescence light detector array, the aperture of the detector array can be enlarged to cover an energy region above 100 PeV where the second knee is located. Cosmic ray spectrum and composition will be measured in order to transfer an energy scale to ultra high energy cosmic ray experiments.
文摘为了获得足够多的地面掩星点资料,用于全球和局部天气预报和大气研究,1997年中国台湾地区和美国联合制定了耗资1亿美元的COSMIC(Constellation Observing System for Meteorology,Ionosphere and Climate)计划。COSMIC是气象、电离层和气候星座观测系统,它包括卫星、地面数据接受和卫星控制站、数据分析中心和数字通讯网络,计划于2005年开始实施。介绍了COSMIC计划产出的历史背景、科学任务及其整个系统的组成,井针对COSMIC和其它LEO(低地球轨道)星座计划,提出了我们应做和正在做的研究工作。
文摘In this study,the correlation between Tm,a key variable in GNSS water vapor inversion,and surface temperature(Ts)was calculated on a global scale based on the global geodetic observing system(GGOS)atmosphere Tmdata and European centre for medium-range weather forecasts(ECMWF)surface temperature data.The results show that their correlation is mainly affected by latitudes,and the correlation is stronger at high latitudes and weaker at low latitudes.Although the correlation is relatively weak in the tropic areas,the temperature changes so little in a year in these areas that we can still achieve good Tmresults by linear regression model.Based on these facts,‘‘GGOS atmosphere’’Tmdata and ECMWF Tsdata from 2005 to2011 were used to establish the global latitude-related linear regression model.The new model has root mean square error(RMSE)of 3.2,3.3,and 4.4 K,respectively,compared with respect to the‘‘GGOS atmosphere’’data,COSMIC data,and radiosonde data and is more accurate than the Bevis Tm–Tsrelationship.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘The Dark Matter Particle Explorer(DAMPE) mission is one of the five scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Science(CAS) approved in 2011. The main scientific objective of DAMPE is to detect electrons and photons in the range of 5 GeV–10 TeV with unprecedented energy resolution(1.5% at 100 GeV) in order to identify possible Dark Matter(DM) signatures. It will also measure the flux of nuclei up to above 500 TeV with excellent energy resolution(40% at 800 GeV), which will bring new insights to the origin and propagation high energy cosmic rays. With its excellent photon detection capability, the DAMPE mission is well placed for new discoveries in high energy-ray astronomy as well.
文摘Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.
文摘以全球无线电探空数据和美国环境预报中心(National Centers for Environmental Prediction,NCEP)预报模式为参照,对COSMIC数据分析与管理中心(COSMIC Data Analysis and Archive Center,CDAAc)提供的2007—06-01~2007—06—30的气象、电离层与气候星座观测系统(the constellation observing system for meteorology,Ionosphere,and climate,COSMIC)的GPS掩星折射指数廓线进行了统计验证。结果表明,掩星廓线的精度在高纬度地区最好,在低纬度地区最差。中、低纬度带掩星廓线相对于探空廓线有系统性相对偏差,该偏差在掩星廓线与NCEP预报廓线的比较中不存在,说明探空数据的质量是造成这种偏差的主要原因,这可能与不同地区所采用的无线电探空仪的性能有关。
基金supported by the National Natural Science Foundation of China(1149056312125509U18672111196114100311775133and 12175152)the Continuous Basic Scientific Research Project No.WDJC-2019-13+1 种基金the Equipment Research and Development Project of Chinese Academy of Sciences(28Y531040)research fund of CNNC。
文摘The ^(25)Mg(p,γ)^(26)Al reaction plays an important role in the study of cosmic 1.809 MeV γ-ray as a signature of ongoing nucleosynthesis in the Galaxy.At astrophysical temperature around 0.1 GK,the ^(25)Mg(p,γ)^(26)Al reaction rates are dominated by the 92 keV resonance capture process.We report a precise measurement of the 92 keV ^(25)Mg(p,γ)^(26)Al resonance in the day-one experiment at Jinping Underground Nuclear Astrophysics experiment(JUNA)facility in the China Jinping Underground Laboratory(CJPL).The resonance strength and ground state feeding factor are determined to be 3.8±0.3×10^(-10) eV and 0:660:04,respectively.The results are in agreement with those reported in the previous direct underground measurement within uncertainty,but with significantly reduced uncertainties.Consequently,we recommend new ^(25)Mg(p,γ)^(26)Al reaction rates which are by a factor of 2.4 larger than those adopted in REACLIB database at the temperature around 0.1 GK.The new results indicate higher production rates of ^(26g)Al and the cosmic 1.809 MeV γ-ray.The implication of the new rates for the understanding of other astrophysical situations is also discussed.
基金Supported by National Natural Science Foundation of China (10935005, 11055002, 11075090)
文摘The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10^-10/(cm2.s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.
文摘针对COSMIC(Constellation Observation System of Meteorology Ionosphere and Climate)掩星反演的大气温度和水汽压二级资料,利用常规探空观测和NCEP(National Centers for Environmental Prediction)分析资料分别进行质量检验分析,以揭示反演资料质量的海陆差异、随纬度和高度变化等三维空间特征。结果显示:我国区域反演资料的温度略低于探空观测与NCEP分析资料,温度与水汽压相对于检验资料的均方根误差较小;全球范围内,反演大气温湿资料的质量随高度和纬度的不同而存在明显差异,而且海洋和陆地上质量的水平和垂直分布特征也存在显著不同。总体上看,COSMIC反演大气温湿资料具有良好的可靠性与精确度,可作为我国数值预报资料同化的新资料,反演温湿资料的质量特征也可为COSMIC资料同化的质量控制和垂直稀疏化方案的设计提供科学依据。