In this paper, flow behavior and topology structure in a highly loaded compressor cascade with and without plasma aerodynamic actuation (PAA) are investigated. Streamline pattern, total pressure loss coefficient, ou...In this paper, flow behavior and topology structure in a highly loaded compressor cascade with and without plasma aerodynamic actuation (PAA) are investigated. Streamline pattern, total pressure loss coefficient, outlet flow angle and topological analysis are considered to study the effect and mechanism of the plasma flow control on corner separation. Results presented include the boundary layer flow behavior, effects of three types of PAA on separated flows and performance parameters, topology structures and sequences of singular points with and without PAA. Two separation lines, reversed flow and backflow exist on the suction surface. The cross flow on the endwall is an important element for the comer separation. PAA can reduce the undertuming and overturning as well as the total pressure loss, leading to an overall increase of flow turning and enhancement of aerodynamic performance. PAA can change the topology structure, sequences of singular points and their corresponding separation lines. Types II and III PAA are much more efficient in controlling comer separation and enhancing aerodynamic performances than type I.展开更多
The vortex pump has increasingly become an important alternative or supplement to the centrifugal pump, the positive displacement pump and the diffusion pump due to its capacity of developing a high head at a small fl...The vortex pump has increasingly become an important alternative or supplement to the centrifugal pump, the positive displacement pump and the diffusion pump due to its capacity of developing a high head at a small flow rate within a single stage. However, the vortex pumps with various blade shapes such as the twisted blades or the 3-D blades are not well studied. In this paper, some new concepts of the 2-D and 3-D corner blades are introduced for the design of the vortex pumps. The mechanism behind the effect of the corner blade shapes on the pump hydraulic performance is numerically investigated and elucidated in terms of the internal vortex structures. The results show that both 2-D and 3-D forward corner blades can induce stronger well-organized longitudinal vortices as well as smaller axial and radial vortices within the impeller blade passage, which benefit a higher pump head and a higher efficiency in comparison with the traditional radial straight blade. This study provides useful guidelines for the design of advanced vortex pumps.展开更多
A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devise...A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.展开更多
基金supported by the National Natural Science Foundation of China (50906100 and 10972236)Foundation for the Author of National Excellent Doctoral Disseration of China (201172)Postgraduate Technology Innovation Foundation of Air Force Engineering University (DX2010103)
文摘In this paper, flow behavior and topology structure in a highly loaded compressor cascade with and without plasma aerodynamic actuation (PAA) are investigated. Streamline pattern, total pressure loss coefficient, outlet flow angle and topological analysis are considered to study the effect and mechanism of the plasma flow control on corner separation. Results presented include the boundary layer flow behavior, effects of three types of PAA on separated flows and performance parameters, topology structures and sequences of singular points with and without PAA. Two separation lines, reversed flow and backflow exist on the suction surface. The cross flow on the endwall is an important element for the comer separation. PAA can reduce the undertuming and overturning as well as the total pressure loss, leading to an overall increase of flow turning and enhancement of aerodynamic performance. PAA can change the topology structure, sequences of singular points and their corresponding separation lines. Types II and III PAA are much more efficient in controlling comer separation and enhancing aerodynamic performances than type I.
基金Project supported by the National Key Research and Development Project of China(Grant No.2016YFB0200903)the National Natural Science Foundation of China(Grant No.51776154)
文摘The vortex pump has increasingly become an important alternative or supplement to the centrifugal pump, the positive displacement pump and the diffusion pump due to its capacity of developing a high head at a small flow rate within a single stage. However, the vortex pumps with various blade shapes such as the twisted blades or the 3-D blades are not well studied. In this paper, some new concepts of the 2-D and 3-D corner blades are introduced for the design of the vortex pumps. The mechanism behind the effect of the corner blade shapes on the pump hydraulic performance is numerically investigated and elucidated in terms of the internal vortex structures. The results show that both 2-D and 3-D forward corner blades can induce stronger well-organized longitudinal vortices as well as smaller axial and radial vortices within the impeller blade passage, which benefit a higher pump head and a higher efficiency in comparison with the traditional radial straight blade. This study provides useful guidelines for the design of advanced vortex pumps.
文摘A multi layer gridless area router is reported.Based on corner stitching,this router adopts tile expansion to explore path for each net.A heuristic method that penalizes nodes deviating from the destination is devised to accelerate the algorithm.Besides,an enhanced interval tree is used to manage the intermediate data structure.In order to improve the completion rate of routing,a new gridless rip up and rerouting algorithm is proposed.The experimental results indicate that the completion rate is improved after the rip up and reroute process and the speed of this algorithm is satisfactory.