Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPh...Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.展开更多
Chlorophenols, typically 4-chlorophenols are highly toxic and non-biodegradable organic contaminants which pose serious threat to the environment, particularly when released into aqueous medium. The removal of these p...Chlorophenols, typically 4-chlorophenols are highly toxic and non-biodegradable organic contaminants which pose serious threat to the environment, particularly when released into aqueous medium. The removal of these pollutants by efficient method has received worldwide concern in recent past. A new Fe3O4–Cr2O3 magnetic nanocomposite was synthesized by wet chemical method under ultrasonic irradiation. Microstructure and morphology of the nanocomposite were characterized by powder X-ray diffraction(XRD),Fourier transform infrared(FT-IR), and a transmission electron microscope(TEM). Magnetic and optical properties were studied by a vibrating sample magnetometer(VSM) and an ultraviolet–visible(UV–Vis) spectrophotometer respectively. The magnetic nanocomposite(MNC) was used as photocatalyst for effective decomposition of 4-chlorophenol in water under ultraviolet(UV) irradiation.展开更多
Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class ...Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction, that are important in water splitting, fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates, and varies with the structures and morphologies of the metal core(elemental composition, core size, etc.) and carbon shell(doping,layer thickness, etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results, and technical challenges for future research.展开更多
A novel NiB deposited layered double hydroxide (LDH) coated ferroferric oxide (Fe304@LDH@NiB) magnet- ic core-shell nanocomposite was successfully fabricated by the combination of coprecipitation and impregna- tio...A novel NiB deposited layered double hydroxide (LDH) coated ferroferric oxide (Fe304@LDH@NiB) magnet- ic core-shell nanocomposite was successfully fabricated by the combination of coprecipitation and impregna- tion-reduction. During the Fe304@LDH preparation, a facile template-free approach was employed to introduce the LDH shell, which was more efficient than the conventional method for the preparation of mesoporous materials that always needs to introduce and remove templates. The resulted Fe304@LDH has a relatively high surface area and abundant surface hydroxyl group, which can adsorb metal ions, making it favorable to disperse and stabilize the ac- tive Ni species, as demonstraed by TEM, XPS, FT-IR and BET characterizations. Therefore, it exhibited good activ- ity in the selective hydrogenation of cinnamic acid to hydrocinnamic acid with the conversion and selectivity both approaching to 100%. Notably, the obtained Fe304@LDH@NiB can be easily separated by an external magnetic field and recycled eleven times without appreciable loss of its initial catalytic activity.展开更多
In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was fo...In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was formed by hydrolysis-condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of the Fe particles.The samples were characterized by XRD,TEM,SAED,TG-DSC and VSM.The results indicate that a thin film of silica is coated on the surface of Fe particles through a Si-O-Fe bond.The coated shell of silica can effectively protect the Fe cores from being oxidized.展开更多
Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanopart...Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm. A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.展开更多
The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent cor...The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent core ensured an effective cooperative sensitization up-conversion, resulting in a bright green luminescence. The silica coating process was performed by a modified St?ber method, which resulted in the formation of core-shell nanostructures, making them suitable for bioapplications. The nanophosphors and nanocomposites were obtained by various methods, such as co-precipitation in the presence of Triton X-100 and micelle synthesis with ethylenediaminetetraacetic acid(EDTA) as organic modifiers/surfactants. The synthesized nanomaterials were characterized with the use of powder X-ray diffraction(XRD), infrared light absorption with Fourier transform FT-IR spectra, transmission electron microscopy(TEM), up-conversion emission spectra under IR light, as well as excitation spectra, emission spectra and fluorescence lifetimes under UV light, and their photophysical properties were compared.展开更多
文摘Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.
基金support from Central Instruments Facility and Department of Chemistry of Indian Institute of Technology Guwahati for extending various analytical facilities during the course of investigation
文摘Chlorophenols, typically 4-chlorophenols are highly toxic and non-biodegradable organic contaminants which pose serious threat to the environment, particularly when released into aqueous medium. The removal of these pollutants by efficient method has received worldwide concern in recent past. A new Fe3O4–Cr2O3 magnetic nanocomposite was synthesized by wet chemical method under ultrasonic irradiation. Microstructure and morphology of the nanocomposite were characterized by powder X-ray diffraction(XRD),Fourier transform infrared(FT-IR), and a transmission electron microscope(TEM). Magnetic and optical properties were studied by a vibrating sample magnetometer(VSM) and an ultraviolet–visible(UV–Vis) spectrophotometer respectively. The magnetic nanocomposite(MNC) was used as photocatalyst for effective decomposition of 4-chlorophenol in water under ultraviolet(UV) irradiation.
基金National Science Foundation (CHE1710408) for partial support of the work
文摘Developing low-cost, high-performance catalysts is of fundamental significance for electrochemical energy conversion and storage. In recent years, metal@carbon core@shell nanocomposites have emerged as a unique class of functional nanomaterials that show apparent electrocatalytic activity towards a range of reactions, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and CO2 reduction reaction, that are important in water splitting, fuel cells and metal-air batteries. The activity is primarily attributed to interfacial charge transfer from the metal core to the carbon shell that manipulate the electronic interactions between the catalyst surface and reaction intermediates, and varies with the structures and morphologies of the metal core(elemental composition, core size, etc.) and carbon shell(doping,layer thickness, etc.). Further manipulation can be achieved by the incorporation of a third structural component. A perspective is also included highlighting the current gap between theoretical modeling and experimental results, and technical challenges for future research.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21376060 and 21676068) and the Natural Science Foundation of Hebei Province (No. B2014201024).
文摘A novel NiB deposited layered double hydroxide (LDH) coated ferroferric oxide (Fe304@LDH@NiB) magnet- ic core-shell nanocomposite was successfully fabricated by the combination of coprecipitation and impregna- tion-reduction. During the Fe304@LDH preparation, a facile template-free approach was employed to introduce the LDH shell, which was more efficient than the conventional method for the preparation of mesoporous materials that always needs to introduce and remove templates. The resulted Fe304@LDH has a relatively high surface area and abundant surface hydroxyl group, which can adsorb metal ions, making it favorable to disperse and stabilize the ac- tive Ni species, as demonstraed by TEM, XPS, FT-IR and BET characterizations. Therefore, it exhibited good activ- ity in the selective hydrogenation of cinnamic acid to hydrocinnamic acid with the conversion and selectivity both approaching to 100%. Notably, the obtained Fe304@LDH@NiB can be easily separated by an external magnetic field and recycled eleven times without appreciable loss of its initial catalytic activity.
文摘In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was formed by hydrolysis-condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of the Fe particles.The samples were characterized by XRD,TEM,SAED,TG-DSC and VSM.The results indicate that a thin film of silica is coated on the surface of Fe particles through a Si-O-Fe bond.The coated shell of silica can effectively protect the Fe cores from being oxidized.
基金Project supported by the Start up Fund for Returned Overseas Chinese Scholars at CSU, China
文摘Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm. A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.
基金supported by the Polish Ministry of Science and Higher Education("Diamond Grant"Nr DI2011 011441)
文摘The presented study concerned up-converting core/shell type nanomaterials based on lanthanide(Ⅲ) ions, Ln(Ⅲ), doped orthoborates. The system studied composed of the GdBO3 doped with Yb^3+/Tb^3+ luminescent core ensured an effective cooperative sensitization up-conversion, resulting in a bright green luminescence. The silica coating process was performed by a modified St?ber method, which resulted in the formation of core-shell nanostructures, making them suitable for bioapplications. The nanophosphors and nanocomposites were obtained by various methods, such as co-precipitation in the presence of Triton X-100 and micelle synthesis with ethylenediaminetetraacetic acid(EDTA) as organic modifiers/surfactants. The synthesized nanomaterials were characterized with the use of powder X-ray diffraction(XRD), infrared light absorption with Fourier transform FT-IR spectra, transmission electron microscopy(TEM), up-conversion emission spectra under IR light, as well as excitation spectra, emission spectra and fluorescence lifetimes under UV light, and their photophysical properties were compared.