期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Chebyshev Polynomials with Applications to Two-Dimensional Operators 被引量:1
1
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2019年第12期990-1033,共44页
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ... A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form. 展开更多
关键词 HYPERGEOMETRIC Function JACOBI POLYNOMIALS Ultraspherical POLYNOMIALS Chebyshev POLYNOMIALS LEGENDRE POLYNOMIALS Hamilton-Cayley Identity Generating Functions FIBONACCI and Lucas Numbers Special LORENTZ Transformations coordinate-invariant methods
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部