Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
This paper concerns the even L_(p)Gaussian Minkowski problem in n-dimensional Euclidean space R^(n).The existence of the solution to the even L_(p)Guassian Minkowski problem for p>n is obtained.
The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwe...The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically.展开更多
In this work, we have selected three number of stepped type solar stills of the same overall dimensions 620 mm (W) × 808 mm (L) but with different absorber surface areas due to the variation in the shape of the b...In this work, we have selected three number of stepped type solar stills of the same overall dimensions 620 mm (W) × 808 mm (L) but with different absorber surface areas due to the variation in the shape of the basin surface. The other design parameters like depth of water, thickness of glass cover, insulation thickness, type of condensing cover, absorbing material provided over the basin, and angle of inclination of the still were kept constant to study the effect of shape of the absorber surface over the distillate yield obtained. The shape of the absorber surface provided in the basins of solar stills A, E and F was flat, convex and concave respectively. When the convex and concave type stepped solar stills are used, the average daily water production has been found to be 56.60% and 29.24% higher than that of flat type stepped solar still respectively. Also an economic analysis was made. The payback period of flat type, convex type and concave type stepped solar still is 823 days, 525 days and 637 days respectively. Thus, the convex type solar still gives the returns within the least possible time as compared to other two types of stepped solar stills. The laboratory tests were conducted to test the quality of water after distillation. The tests indicate that the quality of water in terms of pH, electrical conductivity, total hardness, TDS, Alkalinity, Nitrates etc. is well within the desirable limits as prescribed by WHO for Indian specific conditions.展开更多
in the paper, first, using the transinfinite interpolation strategy rectangular free formsurfaces with C0 and C1 cross boundary continuity are respectively generated by three of its fourboundary curves and correspondi...in the paper, first, using the transinfinite interpolation strategy rectangular free formsurfaces with C0 and C1 cross boundary continuity are respectively generated by three of its fourboundary curves and corresponding cross derivatives. Then, their singularity is removed by anapproximation approach. Finally the surfaces are converted to the NURBS surfaces of degrees 5 × 6and 7×10 respectively. At the end of the paper, conclusions and examples are given.展开更多
Surface reconstruction is a problem in the field of computational geometry that is concerned with recreating a surface from scattered data points sampled from an unknown surface. To date, the primary application of su...Surface reconstruction is a problem in the field of computational geometry that is concerned with recreating a surface from scattered data points sampled from an unknown surface. To date, the primary application of surface reconstruction algorithms has been in computer graphics, where physical models are digitized in three dimensions with laser range scanners or mechanical digitizing probes (Bernardini?et al., 1999?[1]). Surface reconstruction algorithms are used to convert the set of digitized points into a wire frame mesh model, which can be colored, textured, shaded, and placed into a 3D scene (in a movie or television commercial, for example). In this paper, we discuss some computational geometry preliminaries, and then move on to a summary of some different techniques used to address the surface reconstruction problem. The coming sections describe two algorithms: that of Hoppe,?et al. (1992?[2]) and Amenta,?et al. (1998?[3]). Finally, we present other applications of surface reconstruction and a brief comparison for some algorithms in this filed emphasizing on their advantages and disadvantages.展开更多
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金supported by the National Natural Science Foundation of China(No.12301066)China Postdoctoral Science Foundation(No.2020M682222)the Natural Science Foundation of Shandong Province(No.ZR2020QA003)。
文摘This paper concerns the even L_(p)Gaussian Minkowski problem in n-dimensional Euclidean space R^(n).The existence of the solution to the even L_(p)Guassian Minkowski problem for p>n is obtained.
基金Supported by Young Teacher Independent Research Subject of Yanshan University of China(Grant No.15LGA002)
文摘The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically.
文摘In this work, we have selected three number of stepped type solar stills of the same overall dimensions 620 mm (W) × 808 mm (L) but with different absorber surface areas due to the variation in the shape of the basin surface. The other design parameters like depth of water, thickness of glass cover, insulation thickness, type of condensing cover, absorbing material provided over the basin, and angle of inclination of the still were kept constant to study the effect of shape of the absorber surface over the distillate yield obtained. The shape of the absorber surface provided in the basins of solar stills A, E and F was flat, convex and concave respectively. When the convex and concave type stepped solar stills are used, the average daily water production has been found to be 56.60% and 29.24% higher than that of flat type stepped solar still respectively. Also an economic analysis was made. The payback period of flat type, convex type and concave type stepped solar still is 823 days, 525 days and 637 days respectively. Thus, the convex type solar still gives the returns within the least possible time as compared to other two types of stepped solar stills. The laboratory tests were conducted to test the quality of water after distillation. The tests indicate that the quality of water in terms of pH, electrical conductivity, total hardness, TDS, Alkalinity, Nitrates etc. is well within the desirable limits as prescribed by WHO for Indian specific conditions.
文摘in the paper, first, using the transinfinite interpolation strategy rectangular free formsurfaces with C0 and C1 cross boundary continuity are respectively generated by three of its fourboundary curves and corresponding cross derivatives. Then, their singularity is removed by anapproximation approach. Finally the surfaces are converted to the NURBS surfaces of degrees 5 × 6and 7×10 respectively. At the end of the paper, conclusions and examples are given.
文摘Surface reconstruction is a problem in the field of computational geometry that is concerned with recreating a surface from scattered data points sampled from an unknown surface. To date, the primary application of surface reconstruction algorithms has been in computer graphics, where physical models are digitized in three dimensions with laser range scanners or mechanical digitizing probes (Bernardini?et al., 1999?[1]). Surface reconstruction algorithms are used to convert the set of digitized points into a wire frame mesh model, which can be colored, textured, shaded, and placed into a 3D scene (in a movie or television commercial, for example). In this paper, we discuss some computational geometry preliminaries, and then move on to a summary of some different techniques used to address the surface reconstruction problem. The coming sections describe two algorithms: that of Hoppe,?et al. (1992?[2]) and Amenta,?et al. (1998?[3]). Finally, we present other applications of surface reconstruction and a brief comparison for some algorithms in this filed emphasizing on their advantages and disadvantages.