Numerical simulations of Jupiter’s zonal jets are presented, which are generated with realistic and hyper energetic source. The models are three dimensional and nonlinear, applied to a gas that is convective, stratif...Numerical simulations of Jupiter’s zonal jets are presented, which are generated with realistic and hyper energetic source. The models are three dimensional and nonlinear, applied to a gas that is convective, stratified and compressible. Two solutions are presented, one for a shallow 0.6% envelope, the other one 5% deep. For the shallow model (SM), Jupiter’s small energy flux was applied with low kinematic viscosity. For the deep model (DM), the energy source and viscosity had to be much larger to obtain a solution with manageable computer time. Alternating zonal winds are generated of order 100 m/s, and the models reproduce the observed width of the prograde equatorial jet and adjacent retrograde jets at 20°latitude. But the height variations of the zonal winds differ markedly. In SM the velocities vary radially with altitude, but in DM Taylor columns are formed. The dynamical properties of these divergent model results are discussed in light of the computed meridional wind velocities. With large planetary rotation rate Ω, the zonal winds are close to geostrophic, and a quantitative measure of that property is the meridional Rossby number, Rom. In the meridional momentum balance, the ratio between inertial and Coriolis forces produces Rom = V2/ΩLU, U zonal, V meridional winds, L horizontal length scale. Our analysis shows that the meridional winds vary with the viscosity like ν1/2. With much larger viscosity and meridional winds, the Rossby number for DM is much larger, Rom(DM) >> Rom(SM). Compared to the shallow model with zonal winds varying radially, the deeper and more viscous model with Taylor columns is much less geostrophic. The zonal winds of numerical models in the literature tend to be independent of the energy source, in agreement with the present results. With 104 times larger energy flux, the zonal winds for DM only increase by a factor of 3, and the answer is provided by the zonal momentum budget with meridional winds, VU/L = ΩV, yielding U = ΩL, independent of the 展开更多
In this paper a nonlinear model of convective and inertial motion of atmosphere with damping is studied with Melnikov's function method. The results show that in the atmospheric motion under periodic forcing chaos...In this paper a nonlinear model of convective and inertial motion of atmosphere with damping is studied with Melnikov's function method. The results show that in the atmospheric motion under periodic forcing chaos can occur independently whether the atmospheric motion is stable or not; and it is the key to produce chaos that the distribution of relevant physical quantity is nonlinear and periodically drives exists. The formulae calculating the parameter ranger in which chaos occur are given as well.展开更多
On the basis of a three-dimensional non stationary model of a convective cloud with detailed description of dynamic, thermodynamic and microphysical processes, numerical experiments were conducted to study the formati...On the basis of a three-dimensional non stationary model of a convective cloud with detailed description of dynamic, thermodynamic and microphysical processes, numerical experiments were conducted to study the formation of parameters of convective clouds under unstable stratification of the atmosphere. Numerical experiments have been carried out to study the formation of convective processes in the atmosphere. The thermo hydrodynamic parameters in the zone of a thunderstorm cloud are determined, and regions with a vortex motion of air are identified. The main flows feeding the convective cloud in the mature stage are determined. Due to the means of visualization, the areas of formation and growth of precipitation particles are identified. In a three-dimensional form, the interaction of dynamic and thermodynamic processes is analyzed. The interaction of fields is manifested in the form of deformation of fields of thermodynamic parameters under the influence of dynamic processes. Trajectories of air streams around a cloud and the trajectories of drops in a cloud are determined. The results of numerical experiments confirm that dynamic processes significantly influence the formation of fields of thermodynamic parameters in the cloud, which also determine the course of microphysical processes and the nature of the growth of precipitation particles.展开更多
This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permit...This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced.展开更多
The principles that govern the operation of an open and a closed evaporator are relevant for the understanding of the open and “closed” Earth’s atmospheric behaviors, and are thus described. In these greenhouses, t...The principles that govern the operation of an open and a closed evaporator are relevant for the understanding of the open and “closed” Earth’s atmospheric behaviors, and are thus described. In these greenhouses, the water is included, otherwise the heat and mass balances do not match. It is incorrect to consider the radiation as the only energy transfer factor for an atmospheric warming. Demonstrations show that when the greenhouse effect and the cloud cover increase, the evaporation and the wind naturally decrease. Researchers did not understand why reductions in surface solar radiation and pan evaporation have been simultaneous with increased air temperature, cloudiness and precipitation for the last decades. It is an error to state that the evaporation increases based solely on the water and/or air temperatures increase. Also, researchers did not comprehend why in the last 50 years the clouds and the precipitation increased while the evaporation decreased and they named such understanding as the “evaporation paradox”, while others “found” “the cause” violating the laws of thermodynamics, but more precipitation is naturally conciliatory with less evaporation. The same principle that increases the formation of clouds may cause less rainfall. Several measurements confirm the working principles of greenhouses described in this paper. The hydrological cycle is analyzed and it was also put in form of equation, which analyses have never been done before. The human influence alters the velocity of the natural cycles as well as the atmospheric heat and mass balances, and the evaporation has not been the only source for the cloud formation. It is demonstrated that the Earth’s greenhouse effect has increased in some places and this proof is not based only on temperatures.展开更多
We report on an application of gas-kinetic BGK scheme to the computation of turbulent compressible convection in the stellar interior. After incorporating the Sub-grid Scale (SGS) turbulence model into the BGK schem...We report on an application of gas-kinetic BGK scheme to the computation of turbulent compressible convection in the stellar interior. After incorporating the Sub-grid Scale (SGS) turbulence model into the BGK scheme, we tested the effects of numerical parameters on the quantitative relationships among the thermodynamic variables, their fluctuations and correlations in a very deep, initially gravity-stratified stellar atmosphere. Comparison indicates that the thermal properties and dynamic properties are dominated by different aspects of numerical models separately. An adjustable Deardorff constant in the SGS model cu, = 0.25 and an amplitude of artificial viscosity in the gas-kinetic BGK scheme C2 = 0 are appropriate for the current study. We also calculated the densityweighted auto- and cross-correlation functions in Xiong's turbulent stellar convection theory based on which the gradient type of models of the non-local transport and the anisotropy of the turbulence were preliminarily studied. No universal relations or constant parameters were found for these models.展开更多
文摘Numerical simulations of Jupiter’s zonal jets are presented, which are generated with realistic and hyper energetic source. The models are three dimensional and nonlinear, applied to a gas that is convective, stratified and compressible. Two solutions are presented, one for a shallow 0.6% envelope, the other one 5% deep. For the shallow model (SM), Jupiter’s small energy flux was applied with low kinematic viscosity. For the deep model (DM), the energy source and viscosity had to be much larger to obtain a solution with manageable computer time. Alternating zonal winds are generated of order 100 m/s, and the models reproduce the observed width of the prograde equatorial jet and adjacent retrograde jets at 20°latitude. But the height variations of the zonal winds differ markedly. In SM the velocities vary radially with altitude, but in DM Taylor columns are formed. The dynamical properties of these divergent model results are discussed in light of the computed meridional wind velocities. With large planetary rotation rate Ω, the zonal winds are close to geostrophic, and a quantitative measure of that property is the meridional Rossby number, Rom. In the meridional momentum balance, the ratio between inertial and Coriolis forces produces Rom = V2/ΩLU, U zonal, V meridional winds, L horizontal length scale. Our analysis shows that the meridional winds vary with the viscosity like ν1/2. With much larger viscosity and meridional winds, the Rossby number for DM is much larger, Rom(DM) >> Rom(SM). Compared to the shallow model with zonal winds varying radially, the deeper and more viscous model with Taylor columns is much less geostrophic. The zonal winds of numerical models in the literature tend to be independent of the energy source, in agreement with the present results. With 104 times larger energy flux, the zonal winds for DM only increase by a factor of 3, and the answer is provided by the zonal momentum budget with meridional winds, VU/L = ΩV, yielding U = ΩL, independent of the
文摘In this paper a nonlinear model of convective and inertial motion of atmosphere with damping is studied with Melnikov's function method. The results show that in the atmospheric motion under periodic forcing chaos can occur independently whether the atmospheric motion is stable or not; and it is the key to produce chaos that the distribution of relevant physical quantity is nonlinear and periodically drives exists. The formulae calculating the parameter ranger in which chaos occur are given as well.
文摘On the basis of a three-dimensional non stationary model of a convective cloud with detailed description of dynamic, thermodynamic and microphysical processes, numerical experiments were conducted to study the formation of parameters of convective clouds under unstable stratification of the atmosphere. Numerical experiments have been carried out to study the formation of convective processes in the atmosphere. The thermo hydrodynamic parameters in the zone of a thunderstorm cloud are determined, and regions with a vortex motion of air are identified. The main flows feeding the convective cloud in the mature stage are determined. Due to the means of visualization, the areas of formation and growth of precipitation particles are identified. In a three-dimensional form, the interaction of dynamic and thermodynamic processes is analyzed. The interaction of fields is manifested in the form of deformation of fields of thermodynamic parameters under the influence of dynamic processes. Trajectories of air streams around a cloud and the trajectories of drops in a cloud are determined. The results of numerical experiments confirm that dynamic processes significantly influence the formation of fields of thermodynamic parameters in the cloud, which also determine the course of microphysical processes and the nature of the growth of precipitation particles.
基金The National Natural Science Foundation of China(Grant Nos.42030610 and 42075083)the Innovation and Development Project of China Meteorological Administration(CXFZ2022J014)supported this study.
文摘This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced.
文摘The principles that govern the operation of an open and a closed evaporator are relevant for the understanding of the open and “closed” Earth’s atmospheric behaviors, and are thus described. In these greenhouses, the water is included, otherwise the heat and mass balances do not match. It is incorrect to consider the radiation as the only energy transfer factor for an atmospheric warming. Demonstrations show that when the greenhouse effect and the cloud cover increase, the evaporation and the wind naturally decrease. Researchers did not understand why reductions in surface solar radiation and pan evaporation have been simultaneous with increased air temperature, cloudiness and precipitation for the last decades. It is an error to state that the evaporation increases based solely on the water and/or air temperatures increase. Also, researchers did not comprehend why in the last 50 years the clouds and the precipitation increased while the evaporation decreased and they named such understanding as the “evaporation paradox”, while others “found” “the cause” violating the laws of thermodynamics, but more precipitation is naturally conciliatory with less evaporation. The same principle that increases the formation of clouds may cause less rainfall. Several measurements confirm the working principles of greenhouses described in this paper. The hydrological cycle is analyzed and it was also put in form of equation, which analyses have never been done before. The human influence alters the velocity of the natural cycles as well as the atmospheric heat and mass balances, and the evaporation has not been the only source for the cloud formation. It is demonstrated that the Earth’s greenhouse effect has increased in some places and this proof is not based only on temperatures.
基金funded by NSFC through 10573022,10773029the national 973 program through 2007CB815406.
文摘We report on an application of gas-kinetic BGK scheme to the computation of turbulent compressible convection in the stellar interior. After incorporating the Sub-grid Scale (SGS) turbulence model into the BGK scheme, we tested the effects of numerical parameters on the quantitative relationships among the thermodynamic variables, their fluctuations and correlations in a very deep, initially gravity-stratified stellar atmosphere. Comparison indicates that the thermal properties and dynamic properties are dominated by different aspects of numerical models separately. An adjustable Deardorff constant in the SGS model cu, = 0.25 and an amplitude of artificial viscosity in the gas-kinetic BGK scheme C2 = 0 are appropriate for the current study. We also calculated the densityweighted auto- and cross-correlation functions in Xiong's turbulent stellar convection theory based on which the gradient type of models of the non-local transport and the anisotropy of the turbulence were preliminarily studied. No universal relations or constant parameters were found for these models.