This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectio...This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.展开更多
A convection-allowing ensemble forecast experiment on a squall line was conducted based on the breeding growth mode (BGM). Meanwhile, the probability matched mean (PMM) and neighborhood ensemble probability (NEP...A convection-allowing ensemble forecast experiment on a squall line was conducted based on the breeding growth mode (BGM). Meanwhile, the probability matched mean (PMM) and neighborhood ensemble probability (NEP) methods were used to optimize the associated precipitation forecast. The ensemble forecast predicted the precipita- tion tendency accurately, which was closer to the observation than in the control forecast. For heavy rainfall, the pre- cipitation center produced by the ensemble forecast was also better. The Fractions Skill Score (FSS) results indicated that the ensemble mean was skillful in light rainfall, while the PMM produced better probability distribution of pre- cipitation for heavy rainfall. Preliminary results demonstrated that convection-allowing ensemble forecast could im- prove precipitation forecast skill through providing valuable probability forecasts. It is necessary to employ new methods, such as the PMM and NEP, to generate precipitation probability forecasts. Nonetheless, the lack of spread and the overprediction of precipitation by the ensemble members are still problems that need to be solved.展开更多
We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of...We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.展开更多
How to accurately address model uncertainties with consideration of the rapid nonlinear error growth characteristics in a convection-allowing system is a crucial issue for performing convection-scale ensemble forecast...How to accurately address model uncertainties with consideration of the rapid nonlinear error growth characteristics in a convection-allowing system is a crucial issue for performing convection-scale ensemble forecasts.In this study,a new nonlinear model perturbation technique for convective-scale ensemble forecasts is developed to consider a nonlinear representation of model errors in the Global and Regional Assimilation and Prediction Enhanced System(GRAPES)Convection-Allowing Ensemble Prediction System(CAEPS).The nonlinear forcing singular vector(NFSV)approach,that is,conditional nonlinear optimal perturbation-forcing(CNOP-F),is applied in this study,to construct a nonlinear model perturbation method for GRAPES-CAEPS.Three experiments are performed:One of them is the CTL experiment,without adding any model perturbation;the other two are NFSV-perturbed experiments,which are perturbed by NFSV with two different groups of constraint radii to test the sensitivity of the perturbation magnitude constraint.Verification results show that the NFSV-perturbed experiments achieve an overall improvement and produce more skillful forecasts compared to the CTL experiment,which indicates that the nonlinear NFSV-perturbed method can be used as an effective model perturbation method for convection-scale ensemble forecasts.Additionally,the NFSV-L experiment with large perturbation constraints generally performs better than the NFSV-S experiment with small perturbation constraints in the verification for upper-air and surface weather variables.But for precipitation verification,the NFSV-S experiment performs better in forecasts for light precipitation,and the NFSV-L experiment performs better in forecasts for heavier precipitation,indicating that for different precipitation events,the perturbation magnitude constraint must be carefully selected.All the findings above lay a foundation for the design of nonlinear model perturbation methods for future CAEPSs.展开更多
对流尺度集合预报(Convection-allowingEnsemblePrediction,CAEP)是提高强对流天气预报能力的重要手段,构造合理的初始扰动是CAEP的关键问题。本文开展基于观测扰动初值法(Perturbed-observation,PO)的CAEP在内蒙古地区的试验,并以动力...对流尺度集合预报(Convection-allowingEnsemblePrediction,CAEP)是提高强对流天气预报能力的重要手段,构造合理的初始扰动是CAEP的关键问题。本文开展基于观测扰动初值法(Perturbed-observation,PO)的CAEP在内蒙古地区的试验,并以动力降尺度(Downscaling,DOWN)方法作为对比,分析PO方法在内蒙古地区CAEP的预报效果,以期为内蒙古地区CAEP的构建提供技术参考。结果表明:(1)PO方法构造的初始扰动能引入内蒙古地区观测资料从而减少背景场的不确定性,且扰动具有充分的增长能力。(2)与DOWN方法相比,PO方法可以显著减少CAEP的短时预报误差,高空和地面要素的RMSE分别减小4%~43%和3%~9%,集合离散度略有减少。高空要素的CRPS评分最大可减少约53%,地面要素的CRPS评分平均减少6%,整体提高了对流尺度集合预报质量。(3)PO方法能够提高短时降水的预报能力,0.1mm、4 mm和13 mm 3个量级的TS评分分别提升了0.015、0.003和0.0015。且降水个例表明,PO方法对降水的落区和量级预报更准确。展开更多
基于WRF(Weather Research and Forecasting)模式,选取河南“21·7”特大暴雨事件,采用局地增长模培育法(Local Breeding Growth Mode,LBGM)生成对流尺度集合预报系统,在此基础上对24 h累积降水量进行SAL(Structure,Amplitude and L...基于WRF(Weather Research and Forecasting)模式,选取河南“21·7”特大暴雨事件,采用局地增长模培育法(Local Breeding Growth Mode,LBGM)生成对流尺度集合预报系统,在此基础上对24 h累积降水量进行SAL(Structure,Amplitude and Location)检验,结合预报成功指数(Threat Score,TS)、公平成功指数(Equitable Threat Score,ETS)评分等评分结果进行对比分析,综合评估集合预报成员的预报效果,表明:1)基于局地增长模培育法生成初始扰动的集合预报系统成员对于强降水预报有一定优势,在降水强度和位置的预报上与实况较接近;2)经检验,成员e003的TS和ETS评分在20日00时—21日00时(北京时,下同)和21日08时—22日08时两个强降水时段内表现最佳,并在SAL检验中对应较好的降雨强度A和雨区位置L,而成员e008暴雨TS、ETS评分最低,对应SAL检验中具有一定的位置偏差,即TS、ETS评分和SAL检验之间存在相关性,将二者有机结合,可以为业务工作中定量评估模式降水预报效果提供参考;3)通过对比整体评分表现较好的成员e003和较差的成员e008,两者预报的位势高度场与ERA5(ECMWF reanalysis v5,ERA5)再分析资料之间的差值,可以验证降水预报误差主要源于对低涡系统的预报偏差,同时预报评分较好的成员其位势高度偏差较小,综合评估效果更佳。展开更多
基金Key Project of the National Natural Science Foundation of China (42330611)National Natural Science Foundation of China (42105008)。
文摘This study investigated the growth of forecast errors stemming from initial conditions(ICs),lateral boundary conditions(LBCs),and model(MO)perturbations,as well as their interactions,by conducting seven 36 h convectionallowing ensemble forecast(CAEF)experiments.Two cases,one with strong-forcing(SF)and the other with weak-forcing(WF),occurred over the Yangtze-Huai River basin(YHRB)in East China,were selected to examine the sources of uncertainties associated with perturbation growth under varying forcing backgrounds and the influence of these backgrounds on growth.The perturbations exhibited distinct characteristics in terms of temporal evolution,spatial propagation,and vertical distribution under different forcing backgrounds,indicating a dependence between perturbation growth and forcing background.A comparison of the perturbation growth in different precipitation areas revealed that IC and LBC perturbations were significantly influenced by the location of precipitation in the SF case,while MO perturbations were more responsive to convection triggering and dominated in the WF case.The vertical distribution of perturbations showed that the sources of uncertainties and the performance of perturbations varied between SF and WF cases,with LBC perturbations displaying notable case dependence.Furthermore,the interactions between perturbations were considered by exploring the added values of different source perturbations.For the SF case,the added values of IC,LBC,and MO perturbations were reflected in different forecast periods and different source uncertainties,suggesting that the combination of multi-source perturbations can yield positive interactions.In the WF case,MO perturbations provided a more accurate estimation of uncertainties downstream of the Dabie Mountain and need to be prioritized in the research on perturbation development.
基金Supported by the Natural Science Foundation of Nanjing Joint Center of Atmospheric Research(NJCAR2016MS02)National Natural Science Foundation of China(41205073,41275012,and 41275099)
文摘A convection-allowing ensemble forecast experiment on a squall line was conducted based on the breeding growth mode (BGM). Meanwhile, the probability matched mean (PMM) and neighborhood ensemble probability (NEP) methods were used to optimize the associated precipitation forecast. The ensemble forecast predicted the precipita- tion tendency accurately, which was closer to the observation than in the control forecast. For heavy rainfall, the pre- cipitation center produced by the ensemble forecast was also better. The Fractions Skill Score (FSS) results indicated that the ensemble mean was skillful in light rainfall, while the PMM produced better probability distribution of pre- cipitation for heavy rainfall. Preliminary results demonstrated that convection-allowing ensemble forecast could im- prove precipitation forecast skill through providing valuable probability forecasts. It is necessary to employ new methods, such as the PMM and NEP, to generate precipitation probability forecasts. Nonetheless, the lack of spread and the overprediction of precipitation by the ensemble members are still problems that need to be solved.
基金supported by the Natural Science Foundation of Nanjing Joint Center of Atmospheric Research(Grant Nos.NJCAR2016MS02 and NJCAR2016ZD04)the National Natural Science Foundation of China(Grant Nos.41205073 and41675007)the National Key Research and Development Program of China(Grant No.2017YFC1501800)
文摘We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.
基金supported by the National Key Research and Development (R&D) Program of the Ministry of Science and Technology of China (Grant No. 2021YFC3000902)
文摘How to accurately address model uncertainties with consideration of the rapid nonlinear error growth characteristics in a convection-allowing system is a crucial issue for performing convection-scale ensemble forecasts.In this study,a new nonlinear model perturbation technique for convective-scale ensemble forecasts is developed to consider a nonlinear representation of model errors in the Global and Regional Assimilation and Prediction Enhanced System(GRAPES)Convection-Allowing Ensemble Prediction System(CAEPS).The nonlinear forcing singular vector(NFSV)approach,that is,conditional nonlinear optimal perturbation-forcing(CNOP-F),is applied in this study,to construct a nonlinear model perturbation method for GRAPES-CAEPS.Three experiments are performed:One of them is the CTL experiment,without adding any model perturbation;the other two are NFSV-perturbed experiments,which are perturbed by NFSV with two different groups of constraint radii to test the sensitivity of the perturbation magnitude constraint.Verification results show that the NFSV-perturbed experiments achieve an overall improvement and produce more skillful forecasts compared to the CTL experiment,which indicates that the nonlinear NFSV-perturbed method can be used as an effective model perturbation method for convection-scale ensemble forecasts.Additionally,the NFSV-L experiment with large perturbation constraints generally performs better than the NFSV-S experiment with small perturbation constraints in the verification for upper-air and surface weather variables.But for precipitation verification,the NFSV-S experiment performs better in forecasts for light precipitation,and the NFSV-L experiment performs better in forecasts for heavier precipitation,indicating that for different precipitation events,the perturbation magnitude constraint must be carefully selected.All the findings above lay a foundation for the design of nonlinear model perturbation methods for future CAEPSs.
文摘对流尺度集合预报(Convection-allowingEnsemblePrediction,CAEP)是提高强对流天气预报能力的重要手段,构造合理的初始扰动是CAEP的关键问题。本文开展基于观测扰动初值法(Perturbed-observation,PO)的CAEP在内蒙古地区的试验,并以动力降尺度(Downscaling,DOWN)方法作为对比,分析PO方法在内蒙古地区CAEP的预报效果,以期为内蒙古地区CAEP的构建提供技术参考。结果表明:(1)PO方法构造的初始扰动能引入内蒙古地区观测资料从而减少背景场的不确定性,且扰动具有充分的增长能力。(2)与DOWN方法相比,PO方法可以显著减少CAEP的短时预报误差,高空和地面要素的RMSE分别减小4%~43%和3%~9%,集合离散度略有减少。高空要素的CRPS评分最大可减少约53%,地面要素的CRPS评分平均减少6%,整体提高了对流尺度集合预报质量。(3)PO方法能够提高短时降水的预报能力,0.1mm、4 mm和13 mm 3个量级的TS评分分别提升了0.015、0.003和0.0015。且降水个例表明,PO方法对降水的落区和量级预报更准确。
文摘基于WRF(Weather Research and Forecasting)模式,选取河南“21·7”特大暴雨事件,采用局地增长模培育法(Local Breeding Growth Mode,LBGM)生成对流尺度集合预报系统,在此基础上对24 h累积降水量进行SAL(Structure,Amplitude and Location)检验,结合预报成功指数(Threat Score,TS)、公平成功指数(Equitable Threat Score,ETS)评分等评分结果进行对比分析,综合评估集合预报成员的预报效果,表明:1)基于局地增长模培育法生成初始扰动的集合预报系统成员对于强降水预报有一定优势,在降水强度和位置的预报上与实况较接近;2)经检验,成员e003的TS和ETS评分在20日00时—21日00时(北京时,下同)和21日08时—22日08时两个强降水时段内表现最佳,并在SAL检验中对应较好的降雨强度A和雨区位置L,而成员e008暴雨TS、ETS评分最低,对应SAL检验中具有一定的位置偏差,即TS、ETS评分和SAL检验之间存在相关性,将二者有机结合,可以为业务工作中定量评估模式降水预报效果提供参考;3)通过对比整体评分表现较好的成员e003和较差的成员e008,两者预报的位势高度场与ERA5(ECMWF reanalysis v5,ERA5)再分析资料之间的差值,可以验证降水预报误差主要源于对低涡系统的预报偏差,同时预报评分较好的成员其位势高度偏差较小,综合评估效果更佳。