A new experiment for airfoil dynamic stall is conducted by employing the advanced par- ticle image velocimetry (PIV) technology in an open-return wind tunnel. The aim of this experimen- tal investigation is to demon...A new experiment for airfoil dynamic stall is conducted by employing the advanced par- ticle image velocimetry (PIV) technology in an open-return wind tunnel. The aim of this experimen- tal investigation is to demonstrate the influences of different motion parameters on the convection velocity, position and strength of leading edge vortex (LEV) of airfoil under different dynamic stall conditions. Two different typical rotor airfoils, OA209 and SC1095, are measured at different free stream velocities, oscillation frequencies, and angles of attack. It is demonstrated by the measured data that the airfoil with larger leading edge radius could notably decrease the strength of LEV. The angle of attack (AoA) of airfoil can obviously influence the dynamic stall characteristics of airfoil, and the LEV would be effectively inhibited by decreasing the mean pitch angle. In addition, the con- vection velocity of LEV is estimated in this measurement, and the results demonstrate that the influ- ence of airfoil shape on convection velocity of LEV is limited, but the convection velocity of LEV would be increased by enlarging the oscillation frequency. Meanwhile, the convection velocity of LEV is a time variant value, and this value would increase as the LEV convects to the trailing edge of airfoil.展开更多
Density modulation experiments are powerful experimental schemes for the study of particle transport. The diffusion coefficients (D) and convection velocity (V), which cannot be evaluated from the particle balance...Density modulation experiments are powerful experimental schemes for the study of particle transport. The diffusion coefficients (D) and convection velocity (V), which cannot be evaluated from the particle balance in the equilibrium state, can be obtained separately. Further, the estimated values of D and V are determined independent of the absolute value of the particle source rate, which is difficult to obtain experimentally. However, the sensitivities and interpretation of D and V from the modulation experiments need to be considered. This paper describes numerical techniques for solving the particle balance equation of the modulation components. Examples of the analysis are shown regarding the data of LHD experiments, and the results of the modulation experiments are discussed.展开更多
Presence of a cavity changes the mean and fluctuating pressure distributions inside and near the cavity.For cylindrical cavity flow,the diameter-to-depth ratio is the dominant factor.In this study,flow is naturally de...Presence of a cavity changes the mean and fluctuating pressure distributions inside and near the cavity.For cylindrical cavity flow,the diameter-to-depth ratio is the dominant factor.In this study,flow is naturally developed along a flat plate with two different lengths,resulting in different incoming boundary layer thicknesses ahead of the cavity.The effect of Reynolds number based on incoming boundary layer thickness on characteristics of mean and fluctuating pressure distributions is addressed.Pressure sensitive paint was also used to visualize the mean surface pressure patterns.The effect of Reynolds number on the classification of compressible cylindrical cavity flow and self-sustained oscillating frequency is not significant.An increase in Reynolds number results in a reduction in the value of differential pressure or momentum flux near the rear edge.展开更多
Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was ana...Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was analyzed to obtain the pressure statistics, including the wall-pressure root-mean square, skewness and flatness factors, which show the wall pressure distribution was not Gaussian. The profile of the auto-power spectral density and the contour of the streamwise wavenumber-frequency spectral density of wall-pressure were plotted. The "convection ridge" can be observed clearly and the convection velocity can be calculated from the location of the convection peak.展开更多
The line-integrated optical measurement of impurity radiation profiles for the study of light impurity transport is performed in the HT-7 tokamak. The carbon impurity line emissivity is obtained by Abel inversion. The...The line-integrated optical measurement of impurity radiation profiles for the study of light impurity transport is performed in the HT-7 tokamak. The carbon impurity line emissivity is obtained by Abel inversion. The radial transport behaviours of carbon impurities at different central line averaged electron densities ne are investigated in ohmic discharges. The diffusion coefficient Dk(r), the convection velocity Wk(r) and the total flux of the impurity ions Fk decrease with the increase of ne, which shows a reduction in the impurity particle transport at higher electron densities.展开更多
The presence of a cavity changes the mean and fluctuating pressure distributions. Similarities are observed between a cylindrical cavity and a rectangular cavity for a compressible flow.The type of cavity flow field d...The presence of a cavity changes the mean and fluctuating pressure distributions. Similarities are observed between a cylindrical cavity and a rectangular cavity for a compressible flow.The type of cavity flow field depends on the diameter-to-depth ratio and the length-to-depth ratio.The feedback loop is responsible for the generation of discrete acoustic tones. In this study, the selfsustained oscillation for a compressible cylindrical cavity flow was investigated experimentally. For open-type cavities, the power spectra show that the strength of resonance depends on the diameterto-depth ratio(4.43–43.0) and the incoming boundary layer thickness-to-depth ratio(0.72–7.0). The effective streamwise length is used as the characteristic length to estimate the Strouhal number. At higher modes, there is a large deviation from Rossiter's formula for rectangular cavities. The gradient-based searching method was used to evaluate the values of the empirical parameters. Less phase lag and a lower convection velocity are observed.展开更多
基金supported by the National Natural Science Foundation of China(No.11272150)
文摘A new experiment for airfoil dynamic stall is conducted by employing the advanced par- ticle image velocimetry (PIV) technology in an open-return wind tunnel. The aim of this experimen- tal investigation is to demonstrate the influences of different motion parameters on the convection velocity, position and strength of leading edge vortex (LEV) of airfoil under different dynamic stall conditions. Two different typical rotor airfoils, OA209 and SC1095, are measured at different free stream velocities, oscillation frequencies, and angles of attack. It is demonstrated by the measured data that the airfoil with larger leading edge radius could notably decrease the strength of LEV. The angle of attack (AoA) of airfoil can obviously influence the dynamic stall characteristics of airfoil, and the LEV would be effectively inhibited by decreasing the mean pitch angle. In addition, the con- vection velocity of LEV is estimated in this measurement, and the results demonstrate that the influ- ence of airfoil shape on convection velocity of LEV is limited, but the convection velocity of LEV would be increased by enlarging the oscillation frequency. Meanwhile, the convection velocity of LEV is a time variant value, and this value would increase as the LEV convects to the trailing edge of airfoil.
基金supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Density modulation experiments are powerful experimental schemes for the study of particle transport. The diffusion coefficients (D) and convection velocity (V), which cannot be evaluated from the particle balance in the equilibrium state, can be obtained separately. Further, the estimated values of D and V are determined independent of the absolute value of the particle source rate, which is difficult to obtain experimentally. However, the sensitivities and interpretation of D and V from the modulation experiments need to be considered. This paper describes numerical techniques for solving the particle balance equation of the modulation components. Examples of the analysis are shown regarding the data of LHD experiments, and the results of the modulation experiments are discussed.
基金financial support from the Ministry of Science and Technology,Taiwan,China(MOST 1032923-E-006-006-MY3).
文摘Presence of a cavity changes the mean and fluctuating pressure distributions inside and near the cavity.For cylindrical cavity flow,the diameter-to-depth ratio is the dominant factor.In this study,flow is naturally developed along a flat plate with two different lengths,resulting in different incoming boundary layer thicknesses ahead of the cavity.The effect of Reynolds number based on incoming boundary layer thickness on characteristics of mean and fluctuating pressure distributions is addressed.Pressure sensitive paint was also used to visualize the mean surface pressure patterns.The effect of Reynolds number on the classification of compressible cylindrical cavity flow and self-sustained oscillating frequency is not significant.An increase in Reynolds number results in a reduction in the value of differential pressure or momentum flux near the rear edge.
基金The National Natural Science Foundation of China (No10772119)
文摘Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was analyzed to obtain the pressure statistics, including the wall-pressure root-mean square, skewness and flatness factors, which show the wall pressure distribution was not Gaussian. The profile of the auto-power spectral density and the contour of the streamwise wavenumber-frequency spectral density of wall-pressure were plotted. The "convection ridge" can be observed clearly and the convection velocity can be calculated from the location of the convection peak.
基金Project supported by the National Natural Science Foundation of China (Grant No 10235010).
文摘The line-integrated optical measurement of impurity radiation profiles for the study of light impurity transport is performed in the HT-7 tokamak. The carbon impurity line emissivity is obtained by Abel inversion. The radial transport behaviours of carbon impurities at different central line averaged electron densities ne are investigated in ohmic discharges. The diffusion coefficient Dk(r), the convection velocity Wk(r) and the total flux of the impurity ions Fk decrease with the increase of ne, which shows a reduction in the impurity particle transport at higher electron densities.
基金support of the Ministry of Science and Technology (No. MOST 103-2923-E-006MY3)
文摘The presence of a cavity changes the mean and fluctuating pressure distributions. Similarities are observed between a cylindrical cavity and a rectangular cavity for a compressible flow.The type of cavity flow field depends on the diameter-to-depth ratio and the length-to-depth ratio.The feedback loop is responsible for the generation of discrete acoustic tones. In this study, the selfsustained oscillation for a compressible cylindrical cavity flow was investigated experimentally. For open-type cavities, the power spectra show that the strength of resonance depends on the diameterto-depth ratio(4.43–43.0) and the incoming boundary layer thickness-to-depth ratio(0.72–7.0). The effective streamwise length is used as the characteristic length to estimate the Strouhal number. At higher modes, there is a large deviation from Rossiter's formula for rectangular cavities. The gradient-based searching method was used to evaluate the values of the empirical parameters. Less phase lag and a lower convection velocity are observed.