Fields of fluid flow and temperature, and residence time distribution(RTD) curves were investigated by mathematical simulation in a one-strand tundish for continuous casting. It was known from the investigation that a...Fields of fluid flow and temperature, and residence time distribution(RTD) curves were investigated by mathematical simulation in a one-strand tundish for continuous casting. It was known from the investigation that a big "spring uprush" formed on surface around the long shroud when molten steel flowed into a turbulence inhibitor(TI) with extending lips and rushed up reversely out of the TI, while four small "spring uprushes" existed on surface when a TI without extending lips because the liquid steel flowed mainly out of the 4 corners of the TI. The flow of liquid steel in the former tundish configuration was not reasonable and the height of an area where temperature was less than 1819 K was about half of liquid surface height on the right side of the stopper, which meant that big dead zone existed in the former tundish configuration. In the optimal one, the height of such area was only seventh of the liquid surface height. The RTD curves obtained from the mathematical simulation basically agreed with those from the physical modeling and the flow characteristics obtained from these two methods agreed with each other.展开更多
Center porosity and centerline segregation in continuously cast bloom can be minimized by the well-known method of dynamic soft reduction. Metallurgical results of soft reduction previously employed in continuous bloo...Center porosity and centerline segregation in continuously cast bloom can be minimized by the well-known method of dynamic soft reduction. Metallurgical results of soft reduction previously employed in continuous bloom casting for heavy rail steel in Panzhihua Iron and Steel Group were not fully achieved because of the improper soft reduction process. Therefore, experiments for optimizing the process parameters of soft reduction for bloom were carried out. The results show that the proportion of the center porosity, which is less than 1.0, increases from 28.41% to 99.81%, while the proportion of the centerline segregation class increases from 40.91% to 100%, and the proportion of the central cavity increases from 92.05% to 100%, whereas the center carbon segregation index decreases from 1.17 to 1.05. The internal quality and the mechanical performance of the rails produced from continuously cast blooms meet the requirement of high-speed tracks of 350 km/h.展开更多
基金Item Sponsored by Key Project of National Natural Science Foundation of China(61333006)
文摘Fields of fluid flow and temperature, and residence time distribution(RTD) curves were investigated by mathematical simulation in a one-strand tundish for continuous casting. It was known from the investigation that a big "spring uprush" formed on surface around the long shroud when molten steel flowed into a turbulence inhibitor(TI) with extending lips and rushed up reversely out of the TI, while four small "spring uprushes" existed on surface when a TI without extending lips because the liquid steel flowed mainly out of the 4 corners of the TI. The flow of liquid steel in the former tundish configuration was not reasonable and the height of an area where temperature was less than 1819 K was about half of liquid surface height on the right side of the stopper, which meant that big dead zone existed in the former tundish configuration. In the optimal one, the height of such area was only seventh of the liquid surface height. The RTD curves obtained from the mathematical simulation basically agreed with those from the physical modeling and the flow characteristics obtained from these two methods agreed with each other.
文摘Center porosity and centerline segregation in continuously cast bloom can be minimized by the well-known method of dynamic soft reduction. Metallurgical results of soft reduction previously employed in continuous bloom casting for heavy rail steel in Panzhihua Iron and Steel Group were not fully achieved because of the improper soft reduction process. Therefore, experiments for optimizing the process parameters of soft reduction for bloom were carried out. The results show that the proportion of the center porosity, which is less than 1.0, increases from 28.41% to 99.81%, while the proportion of the centerline segregation class increases from 40.91% to 100%, and the proportion of the central cavity increases from 92.05% to 100%, whereas the center carbon segregation index decreases from 1.17 to 1.05. The internal quality and the mechanical performance of the rails produced from continuously cast blooms meet the requirement of high-speed tracks of 350 km/h.