CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities...CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.展开更多
A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is mod...A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is modeled as a distributed parameter system, and the resulting partial differential equation is transformed into a set of ordinary differential equations by means of the finite differences technique. From the above set and using a proper boundary condition, a feedforward control law is synthesized. No experimental tests are reported, however, the dynamic performance of the controller is illustrated by means of numerical simulations.展开更多
This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization ...This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization protocols are presented based on continuous controller strategies which can efficaciously eliminate chattering phenomenon existing in some previous results. Several sufficient conditions ensuring fixed-time and finite-time synchronization are derived by employing Lyapunov stability theory, linear matrix inequality (LMI) and adaptive technique. Furthermore, aimed at the model of this article, we study the problem of adaptive coupling strength in fixed-time synchronization which is rarely involved in previous results. Finally, several numerical examples are given to illustrate the effectiveness of our results.展开更多
In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the...In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.展开更多
基金University Malaysia Sabah fully funds this research under the grant number F08/PGRG/1908/2019,Ag.Asri Ag.Ibrahim received the grant,sponsors’websites:https://www.u ms.edu.my.Conflicts of Interest。
文摘CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.
文摘A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is modeled as a distributed parameter system, and the resulting partial differential equation is transformed into a set of ordinary differential equations by means of the finite differences technique. From the above set and using a proper boundary condition, a feedforward control law is synthesized. No experimental tests are reported, however, the dynamic performance of the controller is illustrated by means of numerical simulations.
文摘This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization protocols are presented based on continuous controller strategies which can efficaciously eliminate chattering phenomenon existing in some previous results. Several sufficient conditions ensuring fixed-time and finite-time synchronization are derived by employing Lyapunov stability theory, linear matrix inequality (LMI) and adaptive technique. Furthermore, aimed at the model of this article, we study the problem of adaptive coupling strength in fixed-time synchronization which is rarely involved in previous results. Finally, several numerical examples are given to illustrate the effectiveness of our results.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101502,2018YFB1702300)the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)。
文摘In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.