The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF t...The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.展开更多
The apparent slip between solid wall and liquid is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this paper. With a no-slip bounce-back scheme applied to the interface, fl...The apparent slip between solid wall and liquid is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this paper. With a no-slip bounce-back scheme applied to the interface, flow regimes under different wall wettabilities are investigated. Because of the wall wettability, liquid apparent slip is observed. Slip lengths for different wall wettabilities are found to collapse nearly onto a single curve as a function of the static contact angle, and thereby a relationship between apparent slip length and contact angle is suggested. Our results also show that the wall wettability leads to the formation of a low-density layer between solid wall and liquid, which produced apparent slip in the micro-scale.展开更多
基金Supported by Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.51125023)National Basic Research Program of China(973program,Grant No.2011CB013405)+1 种基金National Natural Science Foundation of China(Grant Nos.5127552651275105)Fundamental Research Funds for the Central Universities(Grant Nos.HEUCF20130910003,201403017)
文摘The service condition determines the Roiling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.
基金the National Natural Science Foundation of China (Grant No. 50874071)the National High Technology Research and Development of China (863 Program,Grant No. 2008AA06Z201)+1 种基金the Key Program of Science and Technology Commission of Shanghai Municipality (Grant No.071605102)the Leading Talent Funding of Shanghai
文摘The apparent slip between solid wall and liquid is studied by using the Lattice Boltzmann Method (LBM) and the Shan-Chen multiphase model in this paper. With a no-slip bounce-back scheme applied to the interface, flow regimes under different wall wettabilities are investigated. Because of the wall wettability, liquid apparent slip is observed. Slip lengths for different wall wettabilities are found to collapse nearly onto a single curve as a function of the static contact angle, and thereby a relationship between apparent slip length and contact angle is suggested. Our results also show that the wall wettability leads to the formation of a low-density layer between solid wall and liquid, which produced apparent slip in the micro-scale.