Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels,transporters, receptors. Because it is difficult to determinate t...Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels,transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments,accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called Mem Brain, whose input is the amino acid sequence. Mem Brain consists of specialized modules for predicting transmembrane helices, residue–residue contacts and relative accessible surface area of a-helical membrane proteins. Mem Brain achieves aprediction accuracy of 97.9% of ATMH, 87.1% of AP,3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. Mem BrainContact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction,respectively. And Mem Brain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins.Mem Brain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/Mem Brain/.展开更多
蛋白质是由多个氨基酸组成的长链,是生物体的必要组成成分,参与了生命活动的每一个进程。蛋白质结构决定了许多蛋白质的功能,准确预测蛋白质中氨基酸残基接触对于蛋白质结构预测具有重要意义,蛋白质残基接触问题已经成为当前生物信息领...蛋白质是由多个氨基酸组成的长链,是生物体的必要组成成分,参与了生命活动的每一个进程。蛋白质结构决定了许多蛋白质的功能,准确预测蛋白质中氨基酸残基接触对于蛋白质结构预测具有重要意义,蛋白质残基接触问题已经成为当前生物信息领域的热点问题。该文首先给出了蛋白质残基接触图预测的相关背景知识及其重要意义;其次,总结了当前国内外研究的主流方法,包括基于局部相关性的方法、直接耦合分析法与其后处理的方法、以及基于有监督机器学习的方法,并对其中的代表性方法进行了阐述;结合国际蛋白质结构预测竞赛(Critical assessment of protein structure prediction,CASP)的结果对现有模型的性能做了对比和分析;在此基础上,探讨了残基接触图预测在蛋白质结构功能建模中的应用;最后,针对蛋白质接触图预测中存在的若干难点问题,给出了有望取得突破的若干研究方向。展开更多
基金supported by the National Natural Science Foundation of China(Nos.61671288,91530321,61603161)Science and Technology Commission of Shanghai Municipality(Nos.16JC1404300,17JC1403500,16ZR1448700)
文摘Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels,transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments,accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called Mem Brain, whose input is the amino acid sequence. Mem Brain consists of specialized modules for predicting transmembrane helices, residue–residue contacts and relative accessible surface area of a-helical membrane proteins. Mem Brain achieves aprediction accuracy of 97.9% of ATMH, 87.1% of AP,3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. Mem BrainContact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction,respectively. And Mem Brain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins.Mem Brain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/Mem Brain/.
文摘蛋白质是由多个氨基酸组成的长链,是生物体的必要组成成分,参与了生命活动的每一个进程。蛋白质结构决定了许多蛋白质的功能,准确预测蛋白质中氨基酸残基接触对于蛋白质结构预测具有重要意义,蛋白质残基接触问题已经成为当前生物信息领域的热点问题。该文首先给出了蛋白质残基接触图预测的相关背景知识及其重要意义;其次,总结了当前国内外研究的主流方法,包括基于局部相关性的方法、直接耦合分析法与其后处理的方法、以及基于有监督机器学习的方法,并对其中的代表性方法进行了阐述;结合国际蛋白质结构预测竞赛(Critical assessment of protein structure prediction,CASP)的结果对现有模型的性能做了对比和分析;在此基础上,探讨了残基接触图预测在蛋白质结构功能建模中的应用;最后,针对蛋白质接触图预测中存在的若干难点问题,给出了有望取得突破的若干研究方向。