We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
The Environment and Disaster Reduction Satellite Constellation is a small satellite constellation developed by China for disaster monitoring.The two primary optical satellites,HJ-A and HJ-B,were successfully launched ...The Environment and Disaster Reduction Satellite Constellation is a small satellite constellation developed by China for disaster monitoring.The two primary optical satellites,HJ-A and HJ-B,were successfully launched in September 2008.The satellites carry a charge-coupled device,hyperspectral imager,and infrared scanner,and have the capability for wide coverage and rapid revisits in disaster reduction applications.Also scheduled to be launched is the HJ-C,which will carry synthetic aperture radar and have the ability to provide allweather observations at any time.A follow-up‘44’satellite constellation including four optical satellites and four radar satellites is in the works,to achieve the capability of quantitative,all-weather,all-time disaster forecasting,monitoring and assessment.The corresponding disaster reduction application system has a series of functions including remote sensing data processing,disaster monitoring and assessment,decision support,and user service and information distribution,which serves the whole process of disaster management.Since its construction has been carried out,the system has successfully dealt with several huge domestic and international natural disasters,and effectively improved scientific decision support.The follow-up system’s construction will integrate,update,and extend the original system to fulfill large-scale,quantitative,allweather disaster operation application needs.展开更多
With the increase of different sensors,applications and customers,the demand from data providers and users is for a new geospatial data service model,which supports low cost,high dexterity,and which would provide a co...With the increase of different sensors,applications and customers,the demand from data providers and users is for a new geospatial data service model,which supports low cost,high dexterity,and which would provide a comprehensive service.Based on such requirements and demands,the 21AT TripleSat constellation terminal and data delivery and management system has been developed by a Beijing based high-tech enterprise,Twenty First Century Aerospace Technology Co.,Ltd.(21AT).The company is the first commercial Earth observation satellite operator and service provider in China.This new geospatial data service model allows the user to directly access multi-source satellite data,manage the data order,and carry out automatic massive data production and delivery.The solution also implements safe and hierarchical user management,statistical data analysis,and automatic information reports.In addition,a mobile application is also available for users to easily access system functions.This new geospatial solution has already been successfully applied and installed in many customer sites in China,and is now available globally for international clients interested in fast geospatial solutions.It enables the success of customers’operational services.Besides providing TripleSat Constellation images,the multi-source data access system also allows the users to access other satellite data sources,based on customized agreement.This paper describes and discusses this new geospatial data service model.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
文摘The Environment and Disaster Reduction Satellite Constellation is a small satellite constellation developed by China for disaster monitoring.The two primary optical satellites,HJ-A and HJ-B,were successfully launched in September 2008.The satellites carry a charge-coupled device,hyperspectral imager,and infrared scanner,and have the capability for wide coverage and rapid revisits in disaster reduction applications.Also scheduled to be launched is the HJ-C,which will carry synthetic aperture radar and have the ability to provide allweather observations at any time.A follow-up‘44’satellite constellation including four optical satellites and four radar satellites is in the works,to achieve the capability of quantitative,all-weather,all-time disaster forecasting,monitoring and assessment.The corresponding disaster reduction application system has a series of functions including remote sensing data processing,disaster monitoring and assessment,decision support,and user service and information distribution,which serves the whole process of disaster management.Since its construction has been carried out,the system has successfully dealt with several huge domestic and international natural disasters,and effectively improved scientific decision support.The follow-up system’s construction will integrate,update,and extend the original system to fulfill large-scale,quantitative,allweather disaster operation application needs.
基金supported by the project of Beijing Municipal Science and Technology Commission and Science and Technology Innovation Base of Cultivating and Developing Engineering[grant number Z161100005016069]the National High Technology Research and Development Program[grant number 2013AA12A303].
文摘With the increase of different sensors,applications and customers,the demand from data providers and users is for a new geospatial data service model,which supports low cost,high dexterity,and which would provide a comprehensive service.Based on such requirements and demands,the 21AT TripleSat constellation terminal and data delivery and management system has been developed by a Beijing based high-tech enterprise,Twenty First Century Aerospace Technology Co.,Ltd.(21AT).The company is the first commercial Earth observation satellite operator and service provider in China.This new geospatial data service model allows the user to directly access multi-source satellite data,manage the data order,and carry out automatic massive data production and delivery.The solution also implements safe and hierarchical user management,statistical data analysis,and automatic information reports.In addition,a mobile application is also available for users to easily access system functions.This new geospatial solution has already been successfully applied and installed in many customer sites in China,and is now available globally for international clients interested in fast geospatial solutions.It enables the success of customers’operational services.Besides providing TripleSat Constellation images,the multi-source data access system also allows the users to access other satellite data sources,based on customized agreement.This paper describes and discusses this new geospatial data service model.