期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
考虑智能网联近邻车辆信息的交织区换道风险预警 被引量:3
1
作者 谢济铭 夏玉兰 +2 位作者 钱正富 刘兵 秦雅琴 《交通运输工程学报》 EI CSCD 北大核心 2023年第2期287-300,共14页
面向车辆换道风险预测时特征差异大、样本不均衡、参数调优时间久的问题,将高精度微观车辆轨迹数据与超参数优化机器学习方法相结合,提出了一种可应用于智能网联车辆(ICV)的交织区换道风险识别与预警方法;基于无人机航拍视频,从广域视... 面向车辆换道风险预测时特征差异大、样本不均衡、参数调优时间久的问题,将高精度微观车辆轨迹数据与超参数优化机器学习方法相结合,提出了一种可应用于智能网联车辆(ICV)的交织区换道风险识别与预警方法;基于无人机航拍视频,从广域视角提取了城市快速路交织区时间精度为0.1 s、空间精度为每像素0.1 m的换道轨迹,测算了车辆间距、矢量速度、加速度、接近率、速度角度等换道风险感知信息;引入考虑近邻车辆信息的换道TTC模型,以反映车辆汇入或汇出主线的迫切需求,描述其在不同位置的换道行为差异性;结合15分位数法和四分位差法,划分了换道风险预警等级;基于准确率、真阳性率、灵敏度等多项评价指标,遴选并对比了线性分类器、支持向量机、K近邻以及RUSBoost模型换道风险预测结果,得出交织区换道风险实时预警优选模型,针对优选模型进行了超参数优化与验证。研究结果表明:RUSBoost模型为优选模型;超参数优化机器学习方法迭代至第24次时,RUSBoost具有最小误差与最佳点超参数;RUSBoost、BRUSBoost优化模型预测准确率分别为91.40%、99.80%,AUC分别为0.96、0.99;BRUSBoost优化模型对于Ⅰ级、Ⅲ级换道预警精准率分别提升了50.9%、41.2%,有效改善了极端风险换道条件更复杂也更不易预测的缺陷。研究成果有助于智能网联车辆换道决策与轨迹优化,指导交管部门制定ICV动态预警方案。 展开更多
关键词 智能网联车辆 换道风险预警 多车道交织区 微观轨迹数据 碰撞时间
原文传递
智能网联车和人驾车辆混合交通流排队长度估计模型
2
作者 曹宁博 陈家辉 赵利英 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第9期1935-1944,共10页
为了解决智能网联车(ICVs)和人驾车辆(HDVs)混行交叉口的排队估计问题,提出基于概率统计和贝叶斯定理的排队长度估计模型.综合考虑队列中智能网联车位置、速度和渗透率等因素,分别构建可观测队列排队长度估计模型、不可观测队列排队长... 为了解决智能网联车(ICVs)和人驾车辆(HDVs)混行交叉口的排队估计问题,提出基于概率统计和贝叶斯定理的排队长度估计模型.综合考虑队列中智能网联车位置、速度和渗透率等因素,分别构建可观测队列排队长度估计模型、不可观测队列排队长度估计模型和渗透率估计模型,通过迭代实现排队长度和渗透率的实时估计.利用随机种子模拟不同渗透率条件下智能网联车在队列中的分布特征,分析不同交通条件下模型的估计精度.与已有模型的对比表明,在智能网联车低渗透率(10%)条件下,在非高峰时段,本研究模型、已有模型的平均绝对百分比误差(MAPE)分别为29.35%、59.68%;在高峰时段,本研究模型、已有模型的MAPE分别为26.50%、34.66%.在智能网联车高渗透率条件下(90%),在非高峰时段,本研究模型、已有模型的MAPE分别为6.90%、17.85%;在高峰时段,本研究模型、已有模型的MAPE分别为1.45%、1.05%,误差接近.本研究所提出的排队估计模型在低渗透率和高渗透率条件下均具有更好的估计精度. 展开更多
关键词 混合交通流 智能网联车 贝叶斯定理 轨迹数据 排队长度估计
下载PDF
Comparison of Estimated Cycle Split Failures from High-Resolution Controller Event and Connected Vehicle Trajectory Data
3
作者 Saumabha Gayen Enrique D. Saldivar-Carranza Darcy M. Bullock 《Journal of Transportation Technologies》 2023年第4期689-707,共19页
Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the sele... Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve. 展开更多
关键词 Split Failure connected vehicle Detector Traffic Signal Performance Measures trajectory data
下载PDF
Estimation of Connected Vehicle Penetration on US Roads in Indiana, Ohio, and Pennsylvania 被引量:3
4
作者 Margaret Hunter Jijo K. Mathew +1 位作者 Howell Li Darcy M. Bullock 《Journal of Transportation Technologies》 2021年第4期597-610,共14页
Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures.... Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures. A common concern by agencies interested in using crowd sourced probe data is the penetration rate across different types of roads, different hours of the day, and different regions. This paper describes and demonstrates a methodology that uses data from state highway performance monitoring systems in Indiana, Ohio<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and Pennsylvania. The study analyzes 54 locations over the 3 states for select Wednesdays and Saturdays in 2020 and 2021. Overall, across all locations and dates, the median penetration was approximately 4.5%. The median penetration for August 2020 for Indiana, Ohio, and Pennsylvania was 4.6%, 4.3%, and 4.0%, respectively. The median penetration for those same states in August 2020 on interstates and non-interstates was 3.9% and 4.6%, respectively. Additionally, the study conducted a longitudinal evaluation of Indiana penetration for selected months between January 2020 </span><span style="font-family:Verdana;">and</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> June 2021. Indiana penetration increased modestly between December 2020 and June 2021, perhaps due to the post-COVID rebound of passenger vehicle traffic. This pap</span><span style="font-family:Verdana;">er concludes by recommending that the techniques described in this paper</span><span style="font-family:Verdana;"> be scaled to other states so that traffic engineers can make informed decisions on the use and limitations of connected vehicle data for various use cases.</span></span> 展开更多
关键词 connected vehicle trajectory data Penetration Traffic Counts Big data
下载PDF
基于集成学习的信号控制交叉口排队长度估计
5
作者 吴浩 刘磊 唐克双 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第3期405-415,共11页
基于电子警察(LPR)数据和网联车辆轨迹数据,提出了一种基于集成学习的信号控制交叉口排队长度估计方法。通过分析不同数据条件下估计方法的适用条件和精度水平,运用随机森林方法设计集成学习器,并构建电子警察和网联车辆轨迹感知信息及... 基于电子警察(LPR)数据和网联车辆轨迹数据,提出了一种基于集成学习的信号控制交叉口排队长度估计方法。通过分析不同数据条件下估计方法的适用条件和精度水平,运用随机森林方法设计集成学习器,并构建电子警察和网联车辆轨迹感知信息及不同方法估计结果和真实排队长度之间的非线性映射关系。仿真结果表明:本方法的平均绝对误差为1.3 m·周期^(-1)·车道^(-1),平均绝对百分比误差为1.4%。 展开更多
关键词 信号控制交叉口 排队长度 电子警察(LPR)数据 网联车辆轨迹数据 集成学习 随机森林
下载PDF
基于联网车辆轨迹数据的交叉口排队长度估计方法 被引量:3
6
作者 张伟斌 叶竞宇 +1 位作者 白孜帅 李熙莹 《中国公路学报》 EI CAS CSCD 北大核心 2022年第3期216-225,共10页
智能网联车路协同系统以及网约出租车的迅速发展,产生了海量的轨迹数据。轨迹数据具有数据量大、准确性高、分布广、易获取等优点,成为交通研究的重要数据来源。排队长度是评价交叉口运行状态的主要参数之一,对交通状态评估和信号优化... 智能网联车路协同系统以及网约出租车的迅速发展,产生了海量的轨迹数据。轨迹数据具有数据量大、准确性高、分布广、易获取等优点,成为交通研究的重要数据来源。排队长度是评价交叉口运行状态的主要参数之一,对交通状态评估和信号优化等具有重要作用。基于轨迹数据对交叉口排队长度进行估计,并结合交叉口历史排队分布对排队长度估计结果的可靠性及精度进行分析。首先建立基于贝叶斯定理的交叉口排队长度估计方法,在联网车辆相同的假设条件下,推导出排队长度与周期内联网车辆停车位置及车道排队长度的概率关系;并利用轨迹车辆排队长度频率分布对实际排队长度频率分布进行近似,解决所存在的未知量问题。然后,结合交叉口历史排队数据,分析在高斯及非高斯情况下交叉口排队长度的置信区间估计问题,并提出用概率分布偏差来描述排队长度,对结果精度进行估计。在仿真分析部分,通过视频识别技术获取交叉口的排队长度数据,并用随机采样方法模拟了交叉口轨迹数据。最后,通过不同时段的交叉口排队长度估算验证所提出的方法,其中凌晨及下午时段的排队长度估算结果的平均M;值分别为0.20及0.61,M;值分别为27.40%及7.47%。结合概率分布分析方法,判断出凌晨时段及下午时段的排队长度分布分别为非高斯分布及高斯分布,计算概率分布偏差分别为10.63%及7.93%,验证了所提出的精度分析方法相比传统分析方法,在小样本场景具有更高的准确性。 展开更多
关键词 交通工程 智能网联 贝叶斯定理 轨迹数据 排队长度估计 排队分布 精度分析
原文传递
基于网联车辆轨迹数据的周期排队长度估计 被引量:3
7
作者 谈超鹏 姚佳蓉 +1 位作者 曹喻旻 唐克双 《中国公路学报》 EI CAS CSCD 北大核心 2021年第7期140-151,共12页
近年,基于网联车辆轨迹数据的交通管控与服务研究方兴未艾。其中,信号控制交叉口排队长度估计备受关注。然而,在低渗透率条件下,单个周期内轨迹稀少且提供的交通信息十分有限。现有研究仅以当前周期内网联车辆轨迹数据为输入,难以获得... 近年,基于网联车辆轨迹数据的交通管控与服务研究方兴未艾。其中,信号控制交叉口排队长度估计备受关注。然而,在低渗透率条件下,单个周期内轨迹稀少且提供的交通信息十分有限。现有研究仅以当前周期内网联车辆轨迹数据为输入,难以获得准确且可靠的周期级排队长度估计结果。因此,融合利用历史网联车辆轨迹数据提供的车辆到达和停车位置信息以及当前周期内实时观测的网联车辆排队信息,提出一种基于最大后验概率的周期最大排队长度估计方法。首先,依据历史轨迹数据的停车位置信息,估计排队长度的先验分布;其次,依据历史轨迹数据的车辆到达信息,估计周期内车辆的历史到达分布,并结合周期内最后1辆排队网联车辆的到达时刻与停车位置,构建排队长度似然函数;最后,基于贝叶斯理论,结合前述先验分布与似然函数,推导周期排队长度的后验分布,并采用最大后验概率方法实现周期最大排队长度的估计。仿真结果表明:所提方法在不同饱和度和渗透率条件下,均优于现有的方法;即使在车辆轨迹数不超过1 veh·周期^(-1)的低渗透率条件下,所提方法的平均绝对估计误差也不超过2 veh·周期^(-1)。实证结果表明:在渗透率仅为8.96%的条件下,所提方法的平均绝对误差为2.12 veh·周期^(-1),平均相对估计误差为12.4%,同样优于现有同类方法。 展开更多
关键词 交通工程 排队长度估计 最大后验概率估计 网联车辆轨迹 历史轨迹数据 先验分布
原文传递
Using Anonymous Connected Vehicle Data to Evaluate Impact of Speed Feedback Displays, Speed Limit Signs and Roadway Features on Interstate Work Zones Speeds
8
作者 Jijo K. Mathew Jairaj Desai +1 位作者 Howell Li Darcy M. Bullock 《Journal of Transportation Technologies》 2021年第4期545-560,共16页
Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><sp... Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">frequency and severity of crashes. This study used connected vehicle data to evaluate the spatial and temporal impact that regulatory signs, speed feedback displays, and construction site geometry had on vehicle speed. Over 27,000 unique trips over 2 weeks on a 15-mile interstate construction work zone near Lebanon, IN were analyzed. Spatial analysis over a 0.2-mi segment before and after the posted speed limit signs showed that the regulatory signs had no statistical impact on reducing speeds. A before/after analysis was also conducted to study the impact of radar-based speed feedback that displays the motorists</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> speed on a sign below a regulatory speed limit sign. Results showed a maximum drop in median speeds of approximately 5 mph. Speeds greater than 15 mph above the speed limit dropped by 10%</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> 展开更多
关键词 connected vehicle trajectory data Speed Limit Compliance Work Zones Construction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部