Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the sele...Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.展开更多
Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures....Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures. A common concern by agencies interested in using crowd sourced probe data is the penetration rate across different types of roads, different hours of the day, and different regions. This paper describes and demonstrates a methodology that uses data from state highway performance monitoring systems in Indiana, Ohio<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and Pennsylvania. The study analyzes 54 locations over the 3 states for select Wednesdays and Saturdays in 2020 and 2021. Overall, across all locations and dates, the median penetration was approximately 4.5%. The median penetration for August 2020 for Indiana, Ohio, and Pennsylvania was 4.6%, 4.3%, and 4.0%, respectively. The median penetration for those same states in August 2020 on interstates and non-interstates was 3.9% and 4.6%, respectively. Additionally, the study conducted a longitudinal evaluation of Indiana penetration for selected months between January 2020 </span><span style="font-family:Verdana;">and</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> June 2021. Indiana penetration increased modestly between December 2020 and June 2021, perhaps due to the post-COVID rebound of passenger vehicle traffic. This pap</span><span style="font-family:Verdana;">er concludes by recommending that the techniques described in this paper</span><span style="font-family:Verdana;"> be scaled to other states so that traffic engineers can make informed decisions on the use and limitations of connected vehicle data for various use cases.</span></span>展开更多
Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><sp...Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">frequency and severity of crashes. This study used connected vehicle data to evaluate the spatial and temporal impact that regulatory signs, speed feedback displays, and construction site geometry had on vehicle speed. Over 27,000 unique trips over 2 weeks on a 15-mile interstate construction work zone near Lebanon, IN were analyzed. Spatial analysis over a 0.2-mi segment before and after the posted speed limit signs showed that the regulatory signs had no statistical impact on reducing speeds. A before/after analysis was also conducted to study the impact of radar-based speed feedback that displays the motorists</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> speed on a sign below a regulatory speed limit sign. Results showed a maximum drop in median speeds of approximately 5 mph. Speeds greater than 15 mph above the speed limit dropped by 10%</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">展开更多
文摘Current traffic signal split failure (SF) estimations derived from high-resolution controller event data rely on detector occupancy ratios and preset thresholds. The reliability of these techniques depends on the selected thresholds, detector lengths, and vehicle arrival patterns. Connected vehicle (CV) trajectory data can more definitively show when a vehicle split fails by evaluating the number of stops it experiences as it approaches an intersection, but it has limited market penetration. This paper compares cycle-by-cycle SF estimations from both high-resolution controller event data and CV trajectory data, and evaluates the effect of data aggregation on SF agreement between the two techniques. Results indicate that, in general, split failure events identified from CV data are likely to also be captured from high-resolution data, but split failure events identified from high-resolution data are less likely to be captured from CV data. This is due to the CV market penetration rate (MPR) of ~5% being too low to capture representative data for every controller cycle. However, data aggregation can increase the ratio in which CV data captures split failure events. For example, day-of-week data aggregation increased the percentage of split failures identified with high-resolution data that were also captured with CV data from 35% to 56%. It is recommended that aggregated CV data be used to estimate SF as it provides conservative and actionable results without the limitations of intersection and detector configuration. As the CV MPR increases, the accuracy of CV-based SF estimation will also improve.
文摘Connected vehicle data is an important assessment tool for agencies to evaluate the performance of freeways and arterials, provided there is sufficient penetration to provide statistically robust performance measures. A common concern by agencies interested in using crowd sourced probe data is the penetration rate across different types of roads, different hours of the day, and different regions. This paper describes and demonstrates a methodology that uses data from state highway performance monitoring systems in Indiana, Ohio<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">and Pennsylvania. The study analyzes 54 locations over the 3 states for select Wednesdays and Saturdays in 2020 and 2021. Overall, across all locations and dates, the median penetration was approximately 4.5%. The median penetration for August 2020 for Indiana, Ohio, and Pennsylvania was 4.6%, 4.3%, and 4.0%, respectively. The median penetration for those same states in August 2020 on interstates and non-interstates was 3.9% and 4.6%, respectively. Additionally, the study conducted a longitudinal evaluation of Indiana penetration for selected months between January 2020 </span><span style="font-family:Verdana;">and</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> June 2021. Indiana penetration increased modestly between December 2020 and June 2021, perhaps due to the post-COVID rebound of passenger vehicle traffic. This pap</span><span style="font-family:Verdana;">er concludes by recommending that the techniques described in this paper</span><span style="font-family:Verdana;"> be scaled to other states so that traffic engineers can make informed decisions on the use and limitations of connected vehicle data for various use cases.</span></span>
文摘Annually, there are over 120,000 crashes in work zones in the United States. High speeds in construction zones are a well-documented risk factor that increases <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">frequency and severity of crashes. This study used connected vehicle data to evaluate the spatial and temporal impact that regulatory signs, speed feedback displays, and construction site geometry had on vehicle speed. Over 27,000 unique trips over 2 weeks on a 15-mile interstate construction work zone near Lebanon, IN were analyzed. Spatial analysis over a 0.2-mi segment before and after the posted speed limit signs showed that the regulatory signs had no statistical impact on reducing speeds. A before/after analysis was also conducted to study the impact of radar-based speed feedback that displays the motorists</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> speed on a sign below a regulatory speed limit sign. Results showed a maximum drop in median speeds of approximately 5 mph. Speeds greater than 15 mph above the speed limit dropped by 10%</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">