The metropolitan area is a crucial spatial element in promoting new urbanization in China.It possesses theoretical and empirical value in the determination of the evolutionary patterns and development trends necessary...The metropolitan area is a crucial spatial element in promoting new urbanization in China.It possesses theoretical and empirical value in the determination of the evolutionary patterns and development trends necessary for regional integration and high-quality development.This study focused on Nanjing Metropolitan Area,the first national metropolitan area in China,and established three development scenarios by combining ecological–economic spatial conflict(EESC)zones and national key ecological functional areas.These scenarios simulate the spatial distribution of future land use and land cover change(LUCC)using the development zone planning function of the patch generation land use simulation(PLUS)model.The results show that:(1)Between 2000 and 2020,the most prominent characteristics of land use change were largely the massive expansion of built-up land and the significant decline of farmland,while changes in the area of ecological land were less evident.(2)EESC areas experienced significant changes over the past 20 years,but the overall level of conflict was low.Ecological land was the main land use type in the lowest-conflict area,while built-up land was the main land use type in the highest-conflict area.(3)From 2030 to 2050,further expansion of built-up areas is expected,with continued decrease of farmland.The regulation of these land use changes can be achieved through different development zone plans.The economic development scenario had the largest built-up land area,while the ecological protection scenario had the largest farmland area.This study simulates the spatial pattern changes in the metropolitan area based on spatial conflict patterns and national main functional area planning process,providing a scientific reference for future spatial planning and management.展开更多
This study examines the spatial and temporal forest cover changes in Swat and Shangla districts to understand the deforestation pattern in context of the recent security conflict in these districts. We used multi-reso...This study examines the spatial and temporal forest cover changes in Swat and Shangla districts to understand the deforestation pattern in context of the recent security conflict in these districts. We used multi-resolution satellite images to assess the long term deforestation from 2001 to 2009 and also to identify episodic forest cutting areas appeared during the conflict period of Oct. 2007 - Oct. 2008. There are only 58 ha of deforestation identified during the conflict period while 1268 ha of gross annual deforestation were assessed during last eight years. Most of the deforestation patches persist around the administrative boundaries at sub-district levels (tehsils) which can be attributed to ambiguity in unclear jurisdiction between the forest official. The results highlight that the forest cutting appeared in Swat and Shangla during the conflict period is not as significant when compared with the long term deforestation pattern in the area. On the one side the results of the study are supportive to the picture that emerges from international studies which report high rate of deforestation in the country and on the other side it negates any relation between the security situation and the increasing deforestation in the north western Pakistan. The study concludes that deforestation assessments require verification by independent sources of data, such as satellite imagery to improve our understanding of deforestation processes.展开更多
In India, traffic flow on roads is highly mixed in nature with wide variations in the static and dynamic characteristics of vehicles. At unsignalized intersections, vehicles generally do not follow lane discipline and...In India, traffic flow on roads is highly mixed in nature with wide variations in the static and dynamic characteristics of vehicles. At unsignalized intersections, vehicles generally do not follow lane discipline and ignore the rules of priority. Drivers generally become more aggressive and tend to cross the uncontrolled intersections without considering the conflicting traffic. All these conditions cause a very complex traffic situation at unsignal- ized intersections which have a great impact on the capacity and performance of traffic intersections. A new method called additive conflict flow (ACF) method is suitable to determine the capacity of unsignalized inter- sections in non-lane-based mixed traffic conditions as prevailing in India. Occupation time is the key parameter for ACF method, which is defined as the time spent by a vehicle in the conflict area at the intersection. Data for this study were collected at two three-legged unsignalized intersections (one is uncontrolled and other one is semi- controlled) in Mangalore city, India using video-graphic technique during peak periods on three consecutive week days. The occupation time of vehicles at these intersections were studied and compared. The data on conflicting traffic volume and occupation time by each subject vehicle at the conflict area were extracted from the videos using image processing software. The subject vehicles were divided into three categories: two wheelers,cars, and auto-rickshaws. Mathematical relationships were developed to relate the occupation time of different cate- gories of vehicles with the conflicting flow of vehicles for various movements at both the intersections. It was found that occupation time increases with the increasing con- flicting traffic and observed to be higher at the uncontrolled intersection compared to the semicontrolled intersec- tion. The segregated turning movements and the presence of mini roundabout at the semicontrolled intersection reduces the conflicts of vehicular movements, which ulti展开更多
基金National Natural Science Foundation of China,No.42371185National Science Fund for Distinguished Young Scholars,No.41901151。
文摘The metropolitan area is a crucial spatial element in promoting new urbanization in China.It possesses theoretical and empirical value in the determination of the evolutionary patterns and development trends necessary for regional integration and high-quality development.This study focused on Nanjing Metropolitan Area,the first national metropolitan area in China,and established three development scenarios by combining ecological–economic spatial conflict(EESC)zones and national key ecological functional areas.These scenarios simulate the spatial distribution of future land use and land cover change(LUCC)using the development zone planning function of the patch generation land use simulation(PLUS)model.The results show that:(1)Between 2000 and 2020,the most prominent characteristics of land use change were largely the massive expansion of built-up land and the significant decline of farmland,while changes in the area of ecological land were less evident.(2)EESC areas experienced significant changes over the past 20 years,but the overall level of conflict was low.Ecological land was the main land use type in the lowest-conflict area,while built-up land was the main land use type in the highest-conflict area.(3)From 2030 to 2050,further expansion of built-up areas is expected,with continued decrease of farmland.The regulation of these land use changes can be achieved through different development zone plans.The economic development scenario had the largest built-up land area,while the ecological protection scenario had the largest farmland area.This study simulates the spatial pattern changes in the metropolitan area based on spatial conflict patterns and national main functional area planning process,providing a scientific reference for future spatial planning and management.
基金the financial assistance by the United Nations Development Programme (UNDP) - Pakistan through the Pakistan Wetlands Programme
文摘This study examines the spatial and temporal forest cover changes in Swat and Shangla districts to understand the deforestation pattern in context of the recent security conflict in these districts. We used multi-resolution satellite images to assess the long term deforestation from 2001 to 2009 and also to identify episodic forest cutting areas appeared during the conflict period of Oct. 2007 - Oct. 2008. There are only 58 ha of deforestation identified during the conflict period while 1268 ha of gross annual deforestation were assessed during last eight years. Most of the deforestation patches persist around the administrative boundaries at sub-district levels (tehsils) which can be attributed to ambiguity in unclear jurisdiction between the forest official. The results highlight that the forest cutting appeared in Swat and Shangla during the conflict period is not as significant when compared with the long term deforestation pattern in the area. On the one side the results of the study are supportive to the picture that emerges from international studies which report high rate of deforestation in the country and on the other side it negates any relation between the security situation and the increasing deforestation in the north western Pakistan. The study concludes that deforestation assessments require verification by independent sources of data, such as satellite imagery to improve our understanding of deforestation processes.
文摘In India, traffic flow on roads is highly mixed in nature with wide variations in the static and dynamic characteristics of vehicles. At unsignalized intersections, vehicles generally do not follow lane discipline and ignore the rules of priority. Drivers generally become more aggressive and tend to cross the uncontrolled intersections without considering the conflicting traffic. All these conditions cause a very complex traffic situation at unsignal- ized intersections which have a great impact on the capacity and performance of traffic intersections. A new method called additive conflict flow (ACF) method is suitable to determine the capacity of unsignalized inter- sections in non-lane-based mixed traffic conditions as prevailing in India. Occupation time is the key parameter for ACF method, which is defined as the time spent by a vehicle in the conflict area at the intersection. Data for this study were collected at two three-legged unsignalized intersections (one is uncontrolled and other one is semi- controlled) in Mangalore city, India using video-graphic technique during peak periods on three consecutive week days. The occupation time of vehicles at these intersections were studied and compared. The data on conflicting traffic volume and occupation time by each subject vehicle at the conflict area were extracted from the videos using image processing software. The subject vehicles were divided into three categories: two wheelers,cars, and auto-rickshaws. Mathematical relationships were developed to relate the occupation time of different cate- gories of vehicles with the conflicting flow of vehicles for various movements at both the intersections. It was found that occupation time increases with the increasing con- flicting traffic and observed to be higher at the uncontrolled intersection compared to the semicontrolled intersec- tion. The segregated turning movements and the presence of mini roundabout at the semicontrolled intersection reduces the conflicts of vehicular movements, which ulti