The efficiency of removing inhalable particles in a conventional spray scrubber was examined by the theory of wetting dust removal,and condensation growth properties of inhalable particles in the supersaturated vapor ...The efficiency of removing inhalable particles in a conventional spray scrubber was examined by the theory of wetting dust removal,and condensation growth properties of inhalable particles in the supersaturated vapor environments were investigated using a condensation growth dynamic model.The results show that the removal efficiency of inhalable particles is only 16% for the conventional spray scrubber,and vapor condensation is able to cause the submicron particles to grow rapidly into big dusty droplets in very short time.For case with vapor saturation of 1.3 and particle number concentration of 105 cm-3,the fine particles with diameter less than 0.5 μm can shoot to around 0.8 μm in 50 ms.The final diameters of condensation droplets are little affected by the initial particle diameter,but depend mainly on initial vapor saturation and particle number concentration.It is found that the final droplet diameter increases with increase of saturation degree of vapor,while it decreases with increase of particle number concentration.These results could be used as a theoretical basis and technical guidance for practical application of vapor heterogeneous condensation to promote condensation growth and effective removal of inhalable particles.展开更多
Three types of water-based condensational growth systems, which can enable particles to grow in size to facilitate sampling and subsequent chemical analysis, were evaluated. The first one is a mixing type growth syste...Three types of water-based condensational growth systems, which can enable particles to grow in size to facilitate sampling and subsequent chemical analysis, were evaluated. The first one is a mixing type growth system where aerosols are mixed with saturated water vapor, the second one is a thermal diffusive growth system where warm flow enters cold-walled tube, and the third one is a laminar flow type where cold flow enters a warm wet-wall tube. Hygroscopic sodium chloride (NaCl), ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4N03), and non-hygroscopic polystyrene latex (PSL) particles, in the size range of 50-400 nm, were used to determine their growth factors through the growth systems. Our data showed that the third-type growth system could enable particles to grow most efficiently regardless of their hygroscopic property. Collection efficiency of particles in the size range of 0.05-2.5 μm, in a continuous aerosol sampler after they passed through the third-type growth system was about 100%, suggesting that the third-type growth system would he the most useful among the tested growth systems for sampling and subsequent chemical analysis of fine and ultrafine particles.展开更多
文摘The efficiency of removing inhalable particles in a conventional spray scrubber was examined by the theory of wetting dust removal,and condensation growth properties of inhalable particles in the supersaturated vapor environments were investigated using a condensation growth dynamic model.The results show that the removal efficiency of inhalable particles is only 16% for the conventional spray scrubber,and vapor condensation is able to cause the submicron particles to grow rapidly into big dusty droplets in very short time.For case with vapor saturation of 1.3 and particle number concentration of 105 cm-3,the fine particles with diameter less than 0.5 μm can shoot to around 0.8 μm in 50 ms.The final diameters of condensation droplets are little affected by the initial particle diameter,but depend mainly on initial vapor saturation and particle number concentration.It is found that the final droplet diameter increases with increase of saturation degree of vapor,while it decreases with increase of particle number concentration.These results could be used as a theoretical basis and technical guidance for practical application of vapor heterogeneous condensation to promote condensation growth and effective removal of inhalable particles.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST)(NRF-2011-0015548)the Basic Research Project through agrant provided by GIST
文摘Three types of water-based condensational growth systems, which can enable particles to grow in size to facilitate sampling and subsequent chemical analysis, were evaluated. The first one is a mixing type growth system where aerosols are mixed with saturated water vapor, the second one is a thermal diffusive growth system where warm flow enters cold-walled tube, and the third one is a laminar flow type where cold flow enters a warm wet-wall tube. Hygroscopic sodium chloride (NaCl), ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4N03), and non-hygroscopic polystyrene latex (PSL) particles, in the size range of 50-400 nm, were used to determine their growth factors through the growth systems. Our data showed that the third-type growth system could enable particles to grow most efficiently regardless of their hygroscopic property. Collection efficiency of particles in the size range of 0.05-2.5 μm, in a continuous aerosol sampler after they passed through the third-type growth system was about 100%, suggesting that the third-type growth system would he the most useful among the tested growth systems for sampling and subsequent chemical analysis of fine and ultrafine particles.