Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation disp...Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.展开更多
基金Foundation items: High-technology Research and Development Programme of China (2007AA03Z544) Aeronautical Science Foundation of China (20075221001)
文摘Multi-functional Al-matrix composites with high volume fraction (55%-57%) of SiC particles are produced with the new pressureless infiltration fabrication technology. X-ray detection and microscopic observation display the composites which are macroscopically homogeneous without porosity. The investigation further reveals that the SiC/Al composites possess low density (2.94 g/cm^3), high elastic modulus (220 GPa), prominent thermal management function as a result of low coefficient of thermal expansion (8 × 10^4 K^-1) and high thermal conductivity (235 W/(m.K)) as well as unique preventability of resonance vibration. By adopting a series of developed techniques, the multi-functional SiC/Al composites have managed to be made into near-net-shape parts. Many kinds of precision components of space-based optomechanical structures and airborne optoelectronic platform have been turned out. Of them, several typical products are being under test in practices.