An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom s...An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom section although hollow composite insulators with high flexural strength are adopted.Since the standard retrofitting strategy by using stiffer supports cannot reduce stress responses,wire rope isolation is introduced.The optimal design of isolation considers both stress and displacement responses since the slenderness and composite material of insulators contribute to significant displacement.The results show that properly designed isolation can significantly reduce stress without excessive displacement responses.A larger radius configuration helps to improve the applicability of small stiffness isolators under high winds.When the isolation still cannot satisfy the requirement,smaller stiffness isolators with a larger radius,or isolators with increased loops and smaller radius,can be introduced to gain better energy dissipation capacity and effectiveness in response mitigation.Accordingly,a three-step design procedure is proposed to increase the damping force but fix the rotational stiffness of isolation.Hence,the application of wire rope isolation can be extended to UHV composite BPS with a low natural frequency,but conductors with enough redundancy should be used.展开更多
The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requiremen...The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.展开更多
基金National Natural Science Foundation of China under Grant No.51878508National Key R&D Program of China under Grant No.2018YFC0809400。
文摘An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom section although hollow composite insulators with high flexural strength are adopted.Since the standard retrofitting strategy by using stiffer supports cannot reduce stress responses,wire rope isolation is introduced.The optimal design of isolation considers both stress and displacement responses since the slenderness and composite material of insulators contribute to significant displacement.The results show that properly designed isolation can significantly reduce stress without excessive displacement responses.A larger radius configuration helps to improve the applicability of small stiffness isolators under high winds.When the isolation still cannot satisfy the requirement,smaller stiffness isolators with a larger radius,or isolators with increased loops and smaller radius,can be introduced to gain better energy dissipation capacity and effectiveness in response mitigation.Accordingly,a three-step design procedure is proposed to increase the damping force but fix the rotational stiffness of isolation.Hence,the application of wire rope isolation can be extended to UHV composite BPS with a low natural frequency,but conductors with enough redundancy should be used.
基金Financial support from the National Natural Science Foundation of China(22279065 and 21935006)is gratefully acknowledged.
文摘The intense research of lithium-ion batteries has been motivated by their successful applications in mobile devices and electronic vehicles.The emerging of intelligent control in kinds of devices brings new requirements for battery systems.The high-energy lithium batteries are expected to respond or react under different environmental conditions.In this work,a tri-salt composite electrolyte is designed with a temperature switch function for intelligently temperature-controlled lithium batteries.Specifically,the halide Li_(3)YBr_(6)together with LiTFSI and LiNO_(3)works as active fillers in a low-melting-point polymer matrix(polyethyleneglycol dimethyl ether(PEGDME)and polyethylene oxide(PEO)),which is further filled into the pre-lithiated alumina fiber skeleton.Above 60°C,the composite electrolyte exists in the liquid state and fully contacts with the working electrodes on the liquid–solid interface,effectively minimizing the interfacial resistance and leading to high discharge capacity in the cell.The electrolyte is changed into a solid state below 30°C so that the ionic conductivity is significantly reduced and the interface resistance is increased dramatically on the solid–solid interface.Therefore,by simply adjusting the temperature,the cell can be turned“ON”or“OFF”intentionally.This novel function of the composite electrolyte has enlightening significance in developing intelligently temperature-controlled lithium batteries.