Background: The vast percentage of the alveolar bone resorption process happens within the first 12 to 24 weeks post extraction;however, this phenomenon is chronic, and the alveolar ridge continues to resorb. In order...Background: The vast percentage of the alveolar bone resorption process happens within the first 12 to 24 weeks post extraction;however, this phenomenon is chronic, and the alveolar ridge continues to resorb. In order to prevent this reduction or at least recompense the loss of bone dimensions, the alveolar ridge preservation (ARP) technique was developed. Objectives: This research studied the vertical and horizontal bone dimensional changes as a result of non-molar teeth extraction alone against extraction with alveolar ridge preservation utilizing composite (bioceramics/collagen) graft by cone-beam computed tomography radiographies analyses. Material and Methods: This research was a randomized split-mouth controlled trial. 12 patients need extraction of the maxillary non-molar teeth were enrolled and allocated into 2 groups. 12 sockets after atraumatic extraction were filled with a composite graft in the role of the test group, 12 sockets left to unassisted healing after atraumatic extraction without any graft materials in the role of the control group. Two CBCT radiographs were taken at baseline and at 4 months after extraction for comparison. Both vertical and horizontal resorptions of the alveolar ridge were analyzed between test and control group by CBCT radiographs. Results: 4 months after extraction, there was a mean of vertical alveolar bone resorption compared with the baseline (0.56 ± 0.15 mm) in the test group and (1.47 ± 0.30 mm) in the control group. Whereas it was a mean of horizontal alveolar bone resorption compared with the baseline (0.90 ± 0.16 mm) in the test group and (2.26 ± 0.30 mm) in the control group. Therefore, there was a significant difference between the two groups. Conclusions: Within the limitations of this research, we demonstrated that the osteogen-plug technique significantly decreased the reduction of the bone dimensional in comparison to the tooth extraction alone, and showed that the dimensional change of the alveolar ridge after tooth extraction was minimized by using an展开更多
文摘Background: The vast percentage of the alveolar bone resorption process happens within the first 12 to 24 weeks post extraction;however, this phenomenon is chronic, and the alveolar ridge continues to resorb. In order to prevent this reduction or at least recompense the loss of bone dimensions, the alveolar ridge preservation (ARP) technique was developed. Objectives: This research studied the vertical and horizontal bone dimensional changes as a result of non-molar teeth extraction alone against extraction with alveolar ridge preservation utilizing composite (bioceramics/collagen) graft by cone-beam computed tomography radiographies analyses. Material and Methods: This research was a randomized split-mouth controlled trial. 12 patients need extraction of the maxillary non-molar teeth were enrolled and allocated into 2 groups. 12 sockets after atraumatic extraction were filled with a composite graft in the role of the test group, 12 sockets left to unassisted healing after atraumatic extraction without any graft materials in the role of the control group. Two CBCT radiographs were taken at baseline and at 4 months after extraction for comparison. Both vertical and horizontal resorptions of the alveolar ridge were analyzed between test and control group by CBCT radiographs. Results: 4 months after extraction, there was a mean of vertical alveolar bone resorption compared with the baseline (0.56 ± 0.15 mm) in the test group and (1.47 ± 0.30 mm) in the control group. Whereas it was a mean of horizontal alveolar bone resorption compared with the baseline (0.90 ± 0.16 mm) in the test group and (2.26 ± 0.30 mm) in the control group. Therefore, there was a significant difference between the two groups. Conclusions: Within the limitations of this research, we demonstrated that the osteogen-plug technique significantly decreased the reduction of the bone dimensional in comparison to the tooth extraction alone, and showed that the dimensional change of the alveolar ridge after tooth extraction was minimized by using an