Community question answering (CQA) represents the type of Web applications where people can exchange knowledge via asking and answering questions. One significant challenge of most real-world CQA systems is the lack...Community question answering (CQA) represents the type of Web applications where people can exchange knowledge via asking and answering questions. One significant challenge of most real-world CQA systems is the lack of effective matching between questions and the potential good answerers, which adversely affects the efficient knowledge acquisition and circulation. On the one hand, a requester might experience many low-quality answers without receiving a quality response in a brief time; on the other hand, an answerer might face numerous new questions without being able to identify the questions of interest quickly. Under this situation, expert recommendation emerges as a promising technique to address the above issues. Instead of passively waiting for users to browse and find their questions of interest, an expert recommendation method raises the attention of users to the appropriate questions actively and promptly. The past few years have witnessed considerable efforts that address the expert recommendation problem from different perspectives. These methods all have their issues that need to be resolved before the advantages of expert recommendation can be fully embraced. In this survey, we first present an overview of the research efforts and state-of-the-art techniques for the expert recommendation in CQA. We next summarize and compare the existing methods concerning their advantages and shortcomings, followed by discussing the open issues and future research directions.展开更多
基于统计机器翻译模型的问句检索模型,其相关性排序机制主要依赖于词项间的翻译概率,然而已有的模型没有很好地控制翻译模型的噪声,使得当前的问句检索模型存在不完善之处.文中提出一种基于主题翻译模型的问句检索模型,从理论上说明,该...基于统计机器翻译模型的问句检索模型,其相关性排序机制主要依赖于词项间的翻译概率,然而已有的模型没有很好地控制翻译模型的噪声,使得当前的问句检索模型存在不完善之处.文中提出一种基于主题翻译模型的问句检索模型,从理论上说明,该模型利用主题信息对翻译进行合理的约束,达到控制翻译模型噪声的效果,从而提高问句检索的结果.实验结果表明,文中提出的模型在MAP(Mean Average Precision)、MRR(Mean Reciprocal Rank)以及p@1(precision at position one)等指标上显著优于当前最先进的问句检索模型.展开更多
Community Question Answering(CQA) in web forums, as a classic forum for user communication,provides a large number of high-quality useful answers in comparison with traditional question answering.Development of method...Community Question Answering(CQA) in web forums, as a classic forum for user communication,provides a large number of high-quality useful answers in comparison with traditional question answering.Development of methods to get good, honest answers according to user questions is a challenging task in natural language processing. Many answers are not associated with the actual problem or shift the subjects,and this usually occurs in relatively long answers. In this paper, we enhance answer selection in CQA using multidimensional feature combination and similarity order. We make full use of the information in answers to questions to determine the similarity between questions and answers, and use the text-based description of the answer to determine whether it is a reasonable one. Our work includes two subtasks:(a) classifying answers as good, bad, or potentially associated with a question, and(b) answering YES/NO based on a list of all answers to a question. The experimental results show that our approach is significantly more efficient than the baseline model, and its overall ranking is relatively high in comparison with that of other models.展开更多
文摘Community question answering (CQA) represents the type of Web applications where people can exchange knowledge via asking and answering questions. One significant challenge of most real-world CQA systems is the lack of effective matching between questions and the potential good answerers, which adversely affects the efficient knowledge acquisition and circulation. On the one hand, a requester might experience many low-quality answers without receiving a quality response in a brief time; on the other hand, an answerer might face numerous new questions without being able to identify the questions of interest quickly. Under this situation, expert recommendation emerges as a promising technique to address the above issues. Instead of passively waiting for users to browse and find their questions of interest, an expert recommendation method raises the attention of users to the appropriate questions actively and promptly. The past few years have witnessed considerable efforts that address the expert recommendation problem from different perspectives. These methods all have their issues that need to be resolved before the advantages of expert recommendation can be fully embraced. In this survey, we first present an overview of the research efforts and state-of-the-art techniques for the expert recommendation in CQA. We next summarize and compare the existing methods concerning their advantages and shortcomings, followed by discussing the open issues and future research directions.
文摘基于统计机器翻译模型的问句检索模型,其相关性排序机制主要依赖于词项间的翻译概率,然而已有的模型没有很好地控制翻译模型的噪声,使得当前的问句检索模型存在不完善之处.文中提出一种基于主题翻译模型的问句检索模型,从理论上说明,该模型利用主题信息对翻译进行合理的约束,达到控制翻译模型噪声的效果,从而提高问句检索的结果.实验结果表明,文中提出的模型在MAP(Mean Average Precision)、MRR(Mean Reciprocal Rank)以及p@1(precision at position one)等指标上显著优于当前最先进的问句检索模型.
基金developed by the NLP601 group at School of Electronics Engineering and Computer Science, Peking University, within the National Natural Science Foundation of China (No. 61672046)
文摘Community Question Answering(CQA) in web forums, as a classic forum for user communication,provides a large number of high-quality useful answers in comparison with traditional question answering.Development of methods to get good, honest answers according to user questions is a challenging task in natural language processing. Many answers are not associated with the actual problem or shift the subjects,and this usually occurs in relatively long answers. In this paper, we enhance answer selection in CQA using multidimensional feature combination and similarity order. We make full use of the information in answers to questions to determine the similarity between questions and answers, and use the text-based description of the answer to determine whether it is a reasonable one. Our work includes two subtasks:(a) classifying answers as good, bad, or potentially associated with a question, and(b) answering YES/NO based on a list of all answers to a question. The experimental results show that our approach is significantly more efficient than the baseline model, and its overall ranking is relatively high in comparison with that of other models.