GIS assist in specific planning and decision-making processes in irrigation through the input, spatial analysis and output of relevant information. The real strength of GIS is its ability to integrate information. Thi...GIS assist in specific planning and decision-making processes in irrigation through the input, spatial analysis and output of relevant information. The real strength of GIS is its ability to integrate information. This integration power makes the scope of GIS almost infinite. The unique integration capability of GIS allows disparate data sets to be brought together to create a complete picture of a situation. GIS technology illustrates relationships, patterns and connections that are not necessarily obvious in any one data set but are amazingly apparent once the data sets are integrated. GIS also helps us to assess the performance of the irrigation command areas. GIS based system helps a canal to analyze the spatial information about its engineers and farmers to improve planning, management and supply of water resources to its corresponding blocks. In order to manage the water efficiently in the command area, it is needless to say that calculation and evaluation of water demands in detail at block and minor level to be given overriding priority. Blocks and Chak boundaries can be delineated from the Digital Elevation Model using GIS techniques. These boundaries will help to plan and allocate the water resources to improve the water allocation strategies and in turn water use efficiency and can make inter-canal comparisons. The delineated block boundaries can be refined exactly using the drainage, topography and existing canal network in GIS platform.展开更多
As a part of the National Water Development Authority (NWDA) proposal, the linking between Pennar and Cauvery is put forth with a single purpose of conserving water to the maximum extent possible. The present study co...As a part of the National Water Development Authority (NWDA) proposal, the linking between Pennar and Cauvery is put forth with a single purpose of conserving water to the maximum extent possible. The present study covers with land use/land cover (LU/LC) along the alignment study area 17215.68 sq·km. All the details of these features have been studied using IRS-P6, LISSIII data to analyze the effect of land use and land cover. The land use and land cover data are classified into 9 categories such as crop land, current fallow, forest, plantations, built-up land, water bodies, scrub land, sandy area and others. The total area going to be capsized is 17215.68 sq·km out of which 10105.96 sq·km is proposed command area. The 244 villages have to be rehabilitated due to this canal whereas about 4597 villages will enjoy the fruits of this canal in the form of drinking water, ground water recharge and as an additional source of irrigation as well. The study indicated current fallow land of 5340.14 km2 and 6307.98 km2 of cropland can be brought under cultivation which is more than what NWDA estimated land that can be benefitted.展开更多
The management of the subsurface and surface water resources is important for various purposes. Since the quantity and quality of water available for irrigation in India is variable from place to place, groundwater qu...The management of the subsurface and surface water resources is important for various purposes. Since the quantity and quality of water available for irrigation in India is variable from place to place, groundwater quality in the Dimbhe command area was evaluated for its suitability for domestic and irrigation purposes by collecting 37 dug well samples during the post monsoon period of 2014. The suitability assessment was made by estimating pH, electrical conductivity, total dissolved solids, and alkalinity besides major cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) and anions (, Cl<sup>-</sup>, , and ). Out of 37 groundwater samples, 5.41% represents good water, 62.16% indicate poor water, 29.73% indicate very poor water and 2.7% indicate water unsuitable for domestic purposes. Based on these analyses, irrigation quality parameters like, sodium absorption ratio, permeability index, Kelley’s ratio, soluble sodium percentage, residual sodium carbonate, %Mg, %Na, and Mg hazard ratio were calculated. Assessment of groundwater samples indicated that majority of them in both the seasons are suitable for irrigation purposes.展开更多
The groundwater geochemistry of Dimbhe command area of Ghod River basin was evaluated based on major ions characteristic to decide its suitability for drinking, domestic use, and irrigation. Groundwater samples from d...The groundwater geochemistry of Dimbhe command area of Ghod River basin was evaluated based on major ions characteristic to decide its suitability for drinking, domestic use, and irrigation. Groundwater samples from different depth (shallow and deep) aquifer were collected and investigated for pH, electrical conductivity (EC), total dissolved solid (TDS), Ca, Mg, Na, K, Cl, SO4, CO3, HCO3, NO3, Fe, and Mn. The results show that the shallow groundwater is dominated by Ca-HCO3 and Na-HCO3 and deep aquifer by Na-HCO3 water facies. The sodium adsorption ratio (SAR) and salinity hazard indicate that the groundwater from the shallow and deep aquifer is suitable for irrigation purposes, and part of the intermediate aquifer is not suitable for crop irrigation. Groundwater from the shallow and deep aquifer is regarded as fresh water and suitable for drinking, domestic and agricultural irrigation use.展开更多
中继卫星的天基测控是解决中低轨道航天器大范围、长时间、多目标测控的有效途径,但用户星到中继卫星的时延误差、多普勒频移校正误差等参数会对多目标测控带来干扰。针对该问题,首先分析了定位误差引起的时延误差、多普勒频移校正误差...中继卫星的天基测控是解决中低轨道航天器大范围、长时间、多目标测控的有效途径,但用户星到中继卫星的时延误差、多普勒频移校正误差等参数会对多目标测控带来干扰。针对该问题,首先分析了定位误差引起的时延误差、多普勒频移校正误差等因素,设计了天基多目标前向链路遥控SMA(S-band Multiple Access,S频段多址)信号形式和反向遥测链路SMA信号形式,选择与时延校正误差相匹配的LAS(Large Area Synchronous,大区域同步)码作为反向遥测信息的扩频码,建立了导航辅助的终端时延和频率预校正方案模型,可以有效消除多用户干扰。仿真表明,当Eb/N0≥10.5dB时,前向遥控信息误码率pe≤1×10^(-6),反向遥测信息误码率pe≤1×10^(-6),使用LAS码比Gold序列约有2dB性能改善,为基于我国天链卫星的中低轨道卫星稳定运行、载人航天交会对接以及后续空间站建设等任务的测控提供重要参考。展开更多
文摘GIS assist in specific planning and decision-making processes in irrigation through the input, spatial analysis and output of relevant information. The real strength of GIS is its ability to integrate information. This integration power makes the scope of GIS almost infinite. The unique integration capability of GIS allows disparate data sets to be brought together to create a complete picture of a situation. GIS technology illustrates relationships, patterns and connections that are not necessarily obvious in any one data set but are amazingly apparent once the data sets are integrated. GIS also helps us to assess the performance of the irrigation command areas. GIS based system helps a canal to analyze the spatial information about its engineers and farmers to improve planning, management and supply of water resources to its corresponding blocks. In order to manage the water efficiently in the command area, it is needless to say that calculation and evaluation of water demands in detail at block and minor level to be given overriding priority. Blocks and Chak boundaries can be delineated from the Digital Elevation Model using GIS techniques. These boundaries will help to plan and allocate the water resources to improve the water allocation strategies and in turn water use efficiency and can make inter-canal comparisons. The delineated block boundaries can be refined exactly using the drainage, topography and existing canal network in GIS platform.
文摘As a part of the National Water Development Authority (NWDA) proposal, the linking between Pennar and Cauvery is put forth with a single purpose of conserving water to the maximum extent possible. The present study covers with land use/land cover (LU/LC) along the alignment study area 17215.68 sq·km. All the details of these features have been studied using IRS-P6, LISSIII data to analyze the effect of land use and land cover. The land use and land cover data are classified into 9 categories such as crop land, current fallow, forest, plantations, built-up land, water bodies, scrub land, sandy area and others. The total area going to be capsized is 17215.68 sq·km out of which 10105.96 sq·km is proposed command area. The 244 villages have to be rehabilitated due to this canal whereas about 4597 villages will enjoy the fruits of this canal in the form of drinking water, ground water recharge and as an additional source of irrigation as well. The study indicated current fallow land of 5340.14 km2 and 6307.98 km2 of cropland can be brought under cultivation which is more than what NWDA estimated land that can be benefitted.
文摘The management of the subsurface and surface water resources is important for various purposes. Since the quantity and quality of water available for irrigation in India is variable from place to place, groundwater quality in the Dimbhe command area was evaluated for its suitability for domestic and irrigation purposes by collecting 37 dug well samples during the post monsoon period of 2014. The suitability assessment was made by estimating pH, electrical conductivity, total dissolved solids, and alkalinity besides major cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) and anions (, Cl<sup>-</sup>, , and ). Out of 37 groundwater samples, 5.41% represents good water, 62.16% indicate poor water, 29.73% indicate very poor water and 2.7% indicate water unsuitable for domestic purposes. Based on these analyses, irrigation quality parameters like, sodium absorption ratio, permeability index, Kelley’s ratio, soluble sodium percentage, residual sodium carbonate, %Mg, %Na, and Mg hazard ratio were calculated. Assessment of groundwater samples indicated that majority of them in both the seasons are suitable for irrigation purposes.
文摘The groundwater geochemistry of Dimbhe command area of Ghod River basin was evaluated based on major ions characteristic to decide its suitability for drinking, domestic use, and irrigation. Groundwater samples from different depth (shallow and deep) aquifer were collected and investigated for pH, electrical conductivity (EC), total dissolved solid (TDS), Ca, Mg, Na, K, Cl, SO4, CO3, HCO3, NO3, Fe, and Mn. The results show that the shallow groundwater is dominated by Ca-HCO3 and Na-HCO3 and deep aquifer by Na-HCO3 water facies. The sodium adsorption ratio (SAR) and salinity hazard indicate that the groundwater from the shallow and deep aquifer is suitable for irrigation purposes, and part of the intermediate aquifer is not suitable for crop irrigation. Groundwater from the shallow and deep aquifer is regarded as fresh water and suitable for drinking, domestic and agricultural irrigation use.
文摘中继卫星的天基测控是解决中低轨道航天器大范围、长时间、多目标测控的有效途径,但用户星到中继卫星的时延误差、多普勒频移校正误差等参数会对多目标测控带来干扰。针对该问题,首先分析了定位误差引起的时延误差、多普勒频移校正误差等因素,设计了天基多目标前向链路遥控SMA(S-band Multiple Access,S频段多址)信号形式和反向遥测链路SMA信号形式,选择与时延校正误差相匹配的LAS(Large Area Synchronous,大区域同步)码作为反向遥测信息的扩频码,建立了导航辅助的终端时延和频率预校正方案模型,可以有效消除多用户干扰。仿真表明,当Eb/N0≥10.5dB时,前向遥控信息误码率pe≤1×10^(-6),反向遥测信息误码率pe≤1×10^(-6),使用LAS码比Gold序列约有2dB性能改善,为基于我国天链卫星的中低轨道卫星稳定运行、载人航天交会对接以及后续空间站建设等任务的测控提供重要参考。