本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K^m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K^m=sum from k=1 to n S(m,k) ((n+1)!)/((k...本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K^m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K^m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5));展开更多
文摘本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K^m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K^m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5));