Requirements for monitoring the coastal zone environment are first summarized. Then the appli- cation of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coa...Requirements for monitoring the coastal zone environment are first summarized. Then the appli- cation of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coast beaches and bottom matter, target recognition, mine detection, oil spill identification and ocean color remote sensing. Finally, what is needed to follow on in application of hyperspectral remote sensing to coast environment is recommended.展开更多
Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important pa...Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important parameter to measure the performance of CT-OLEDs. In this paper, the effect of changing the utilization of phosphorescent materials and the position of the recombination zone (RZ) in the device are investigated by changing the thickness of the emissive layer (EML) and the doping ratio of the host and guest materials. The results show that reducing the red phosphorescent material and improving the blue phosphorescent material can affect the change direction of CCT, but it is not enough to expand the span of CCT (ΔCCT). It is more conducive to improving ΔCCT by more reasonable regulation of the position of the main RZ in EML and the energy transfer from the blue sub-EML to the red sub-EML. Device D obtains the best electro-optic and spectral characteristics, in which the maximum ΔCCT is 5746 K (2661 - 8407 K) as the voltage changes from 3.75 V to 9.75 V, the maximum current efficiency and luminance reach 18.34 cd·A<sup>-1</sup> and 12,100 cd·m<sup>-2</sup>, respectively.展开更多
To determine the genetic diversity and population structure of sweet potato accessions cultivated in China, and to establish the genetic relationships among their germplasm types, a representative collection of 240 ac...To determine the genetic diversity and population structure of sweet potato accessions cultivated in China, and to establish the genetic relationships among their germplasm types, a representative collection of 240 accessions was analyzed using inter-simple sequence repeat (ISSR) markers. The mean genetic similarity coefifcient, Nei’s gene diversity, and shared allele distance of tested sweet potato accessions were 0.7302, 0.3167 and 0.2698, respectively. The 240 accessions could be divided into six subgroups and ifve subpopulations based on neighbor-joining (NJ) clustering and STRUCTURE results, and obvious genetic relationships among the tested sweet potato accessions were identiifed. The marker-based NJ clustering and population structure showed no distinct assignment pattern corresponding to lfesh color or geographical ecotype of the tested sweet potato germplasm. Analysis of molecular variance (AMOVA) revealed small but signiifcant difference between white and orange-lfeshed sweet potato accessions. Small but signiifcant difference were also observed among sweet potato accessions from the Southern summer-autumn sweet potato region, the Yellow River Basin spring and summer sweet potato region and the Yangtze River Basin summer sweet potato region. This study demonstrates that genetic diversity in the tested sweet potato germplasm collection in China is lower than that in some reported sweet potato germplasm collections from other regions. Pedigree investigations suggest that more diverse Chinese sweet potato varieties should be formed by broadening the selection scope of breeding parents and incorporating the introduced varieties into future breeding programs.展开更多
基金The National "973" Program of China under contract No.2009CB723902the Key Projects of the Knowledge Innovation Program of Chinese Academy of Sciences under contract No.KZCX1-YW-14-2.
文摘Requirements for monitoring the coastal zone environment are first summarized. Then the appli- cation of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coast beaches and bottom matter, target recognition, mine detection, oil spill identification and ocean color remote sensing. Finally, what is needed to follow on in application of hyperspectral remote sensing to coast environment is recommended.
文摘Using a color-tunable organic light-emitting diode (CT-OLED) can accord with the circadian cycle of humans and realize healthy lighting. The variation range of the correlated color temperature (CCT) is an important parameter to measure the performance of CT-OLEDs. In this paper, the effect of changing the utilization of phosphorescent materials and the position of the recombination zone (RZ) in the device are investigated by changing the thickness of the emissive layer (EML) and the doping ratio of the host and guest materials. The results show that reducing the red phosphorescent material and improving the blue phosphorescent material can affect the change direction of CCT, but it is not enough to expand the span of CCT (ΔCCT). It is more conducive to improving ΔCCT by more reasonable regulation of the position of the main RZ in EML and the energy transfer from the blue sub-EML to the red sub-EML. Device D obtains the best electro-optic and spectral characteristics, in which the maximum ΔCCT is 5746 K (2661 - 8407 K) as the voltage changes from 3.75 V to 9.75 V, the maximum current efficiency and luminance reach 18.34 cd·A<sup>-1</sup> and 12,100 cd·m<sup>-2</sup>, respectively.
基金supported by the National Natural Science Foundation of China (31101192)the Animal and Plant Breeding Project of Chongqing,China (cstc2010AB1053)+2 种基金the Application Development Key Project of Chongqing,China (cstc2013yykfb80010)the Fundamental Research Funds for the Central Universities,China (XDJK2011C004)the "111" Project (B12006) of Ministry of Education,China
文摘To determine the genetic diversity and population structure of sweet potato accessions cultivated in China, and to establish the genetic relationships among their germplasm types, a representative collection of 240 accessions was analyzed using inter-simple sequence repeat (ISSR) markers. The mean genetic similarity coefifcient, Nei’s gene diversity, and shared allele distance of tested sweet potato accessions were 0.7302, 0.3167 and 0.2698, respectively. The 240 accessions could be divided into six subgroups and ifve subpopulations based on neighbor-joining (NJ) clustering and STRUCTURE results, and obvious genetic relationships among the tested sweet potato accessions were identiifed. The marker-based NJ clustering and population structure showed no distinct assignment pattern corresponding to lfesh color or geographical ecotype of the tested sweet potato germplasm. Analysis of molecular variance (AMOVA) revealed small but signiifcant difference between white and orange-lfeshed sweet potato accessions. Small but signiifcant difference were also observed among sweet potato accessions from the Southern summer-autumn sweet potato region, the Yellow River Basin spring and summer sweet potato region and the Yangtze River Basin summer sweet potato region. This study demonstrates that genetic diversity in the tested sweet potato germplasm collection in China is lower than that in some reported sweet potato germplasm collections from other regions. Pedigree investigations suggest that more diverse Chinese sweet potato varieties should be formed by broadening the selection scope of breeding parents and incorporating the introduced varieties into future breeding programs.