期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的大学生就业推荐算法研究与设计
1
作者 江鹏 《数码设计》 2019年第14期23-24,共2页
数据挖掘可以从海量的数据信息中挖掘潜在的、有价值的数据知识,为人们提供决策辅助支撑,比如可以为大学生推荐合适的职位。本文在大学生就业推荐中引入先进的卷积神经网络,其作为一种先进的数据挖掘算法,可以利用多层次、深度学习模式... 数据挖掘可以从海量的数据信息中挖掘潜在的、有价值的数据知识,为人们提供决策辅助支撑,比如可以为大学生推荐合适的职位。本文在大学生就业推荐中引入先进的卷积神经网络,其作为一种先进的数据挖掘算法,可以利用多层次、深度学习模式,准确的提取大学生招聘岗位信息,匹配大学生的个人专业或能力,该算法具有参数少、层数多等特点,分类速度比较快,实时性非常强。实验结果表明,该算法推荐准确度达到了98%,在大学生就业推荐应用上具有较强的优势。 展开更多
关键词 数据挖掘 大学生就业推荐 分类 卷积核尺度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部