Matrix metalloproteinases (MMPs) are a family of extracellular proteases capable of degrading various proteinaceous components of the extracellular matrix (ECM).They have been implicated to play important roles in a n...Matrix metalloproteinases (MMPs) are a family of extracellular proteases capable of degrading various proteinaceous components of the extracellular matrix (ECM).They have been implicated to play important roles in a number of developmental and pathological processes, such as tumor metastasis and inflammation. Relatively few studies have been carried out to investigate the function of MMPs during postembryonic organ-development. Using Xenopus laevis development as a model system, we demonstrate here that three MMPs, stromelysin-3 (ST3),collagenases-3 (Col3), and Col4, have distinct spatial and temporal expression profiles during metamorphosis as the tadpole transforms into a frog. In situ hybridizations reveal a tight, but distinct, association of individual MMPs with tissue remodeling in the tail and intestine during metamorphosis. In particular, ST3 expression is strongly correlated with apoptosis in both organs as demonstrated by analyses of serial sections with in situ hybridization for ST3 mRNA and TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end labeling) for apoptosis, respectively. On the other hand, Col3 and Col4 MMPs in Xenopus laevis development are present in regions where extensive connective tissue remodeling take place. These results indicate that ST3 is likely to play a role in ECM-remodeling that facilitateapoptotic tissue remodeling or resorption while Col3 and Col4 appear to participate in connective tissue degradation during development.展开更多
Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable gtomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing...Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable gtomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing were performed on a large Chinese cohort that comprised 40 FSGS families, 50 sporadic FSGS patients, 9 independent autosomal recessive Atport's syndrome (ARAS) patients, and 190 ethnically matched healthy controls. Patients with extrarenal manifestations, indicating systemic diseases or other known hereditary renal diseases, were excluded. Heterozygous COL4A3 mutations were identified in five (12.5%) FSGS families and one (2%) sporadic FSGS patient. All identified mutations disrupted highly conserved protein sequences and none of them was found in either public databases or the 190 healthy controls. Of the FSGS patients with heterozygous COL4A3 mutations, segmental thinning of the glomerular base membrane (GBM) was only detected in the patient with electronic microscopy examination results available. Five ARAS patients (55.6%) had homozygous or compound-heterozygous mutations in COL4.43 or COL4A4. Serious changes in the G BM, hearing loss, and ocular abnormalities were found in 100%, 80%, and 40% of the ARAS patients, respectively. Overall, a new sub- group of FSGS patients resulting from heterozygous C01.4A3 mutations was identified. The mutations are relatively frequent in famiUes diagnosed with inherited forms of FSGS. Thus, we suggest screening for C01.4A3 mutations in familial FSGS patients.展开更多
文摘Matrix metalloproteinases (MMPs) are a family of extracellular proteases capable of degrading various proteinaceous components of the extracellular matrix (ECM).They have been implicated to play important roles in a number of developmental and pathological processes, such as tumor metastasis and inflammation. Relatively few studies have been carried out to investigate the function of MMPs during postembryonic organ-development. Using Xenopus laevis development as a model system, we demonstrate here that three MMPs, stromelysin-3 (ST3),collagenases-3 (Col3), and Col4, have distinct spatial and temporal expression profiles during metamorphosis as the tadpole transforms into a frog. In situ hybridizations reveal a tight, but distinct, association of individual MMPs with tissue remodeling in the tail and intestine during metamorphosis. In particular, ST3 expression is strongly correlated with apoptosis in both organs as demonstrated by analyses of serial sections with in situ hybridization for ST3 mRNA and TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end labeling) for apoptosis, respectively. On the other hand, Col3 and Col4 MMPs in Xenopus laevis development are present in regions where extensive connective tissue remodeling take place. These results indicate that ST3 is likely to play a role in ECM-remodeling that facilitateapoptotic tissue remodeling or resorption while Col3 and Col4 appear to participate in connective tissue degradation during development.
基金This workwas supported by grants from the National Basic Research Program of China 973, grant no. 2012CB517600 (no. 2012CB517604), the National Natural Science Foundation of China (no. 81030015, 81070568, 81370015, and 81000295), the International Cooperation and Exchange Projects of Shanghai Science and Technology Committee (no. 14430721000), and the Chinese Medical Association Clinical Research Special Fund (no. 13030280413).
文摘Focal segmental glomerulosclerosis (FSGS) is a histologically identifiable gtomerular injury often leading to proteinuria and renal failure. To identify its causal genes, whole-exome sequencing and Sanger sequencing were performed on a large Chinese cohort that comprised 40 FSGS families, 50 sporadic FSGS patients, 9 independent autosomal recessive Atport's syndrome (ARAS) patients, and 190 ethnically matched healthy controls. Patients with extrarenal manifestations, indicating systemic diseases or other known hereditary renal diseases, were excluded. Heterozygous COL4A3 mutations were identified in five (12.5%) FSGS families and one (2%) sporadic FSGS patient. All identified mutations disrupted highly conserved protein sequences and none of them was found in either public databases or the 190 healthy controls. Of the FSGS patients with heterozygous COL4A3 mutations, segmental thinning of the glomerular base membrane (GBM) was only detected in the patient with electronic microscopy examination results available. Five ARAS patients (55.6%) had homozygous or compound-heterozygous mutations in COL4.43 or COL4A4. Serious changes in the G BM, hearing loss, and ocular abnormalities were found in 100%, 80%, and 40% of the ARAS patients, respectively. Overall, a new sub- group of FSGS patients resulting from heterozygous C01.4A3 mutations was identified. The mutations are relatively frequent in famiUes diagnosed with inherited forms of FSGS. Thus, we suggest screening for C01.4A3 mutations in familial FSGS patients.