In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positi...In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positive periodic solutions of this model.展开更多
This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions fo...This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.展开更多
The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By m...The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By means of the coincidence degree theory, sufficient conditions for the existence of at least one positive periodic solution of this model are established. Moreover, The author shows that the system is uniformly persistent under the conditions.展开更多
The nature and properties of dark matter and dark energy in the universe are among the outstanding open issues of modern cosmology. Despite extensive theoretical and empirical efforts, the question “what is dark matt...The nature and properties of dark matter and dark energy in the universe are among the outstanding open issues of modern cosmology. Despite extensive theoretical and empirical efforts, the question “what is dark matter made of?” has not been answered satisfactorily. Candidates proposed to identify particle dark matter span over ninety orders of magnitude in mass, from ultra-light bosons, to massive black holes. Dark energy is a greater enigma. It is believed to be some kind of negative vacuum energy, responsible for driving galaxies apart in accelerated motion. In this article we take a relativistic approach in theorizing about dark matter and dark energy. Our approach is based on our recently proposed Information Relativity theory. Rather than theorizing about the identities of particle dark matter candidates, we investigate the relativistic effects on large scale celestial structures at their recession from an observer on Earth. We analyze a simplified model of the universe, in which large scale celestial bodies, like galaxies and galaxy clusters, are non-charged compact bodies that recede rectilinearly along the line-of-sight of an observer on Earth. We neglect contributions to dark matter caused by the rotation of celestial structures (e.g., the rotation of galaxies) and of their constituents (e.g., rotations of stars inside galaxies). We define the mass of dark matter as the complimentary portion of the derived relativistic mass, such that at any given recession velocity the sum of the two is equal to the Newtonian mass. The emerging picture from our analysis could be summarized as follows: 1) At any given redshift, the dark matter of a receding body exists in duality to its observable matter. 2) The dynamical interaction between the dark and the observed matter is determined by the body’s recession velocity (or redshift). 3) The observable matter mass density decreases with its recession velocity, with matter transforming to dark matter. 4) For redshifts z 0.5 the universe is dominated by dark matter.展开更多
We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence de...We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.展开更多
In this paper, we study a non-autonomous ratio-dependent predator-prey model with predator's harvest. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least two po...In this paper, we study a non-autonomous ratio-dependent predator-prey model with predator's harvest. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least two positive periodic solutions of this model.展开更多
High spin states of 84Sr were populated through the reaction 70Zn(18O,4n)84Sr at 75 MeV beam energy.Measurement of excitation function,γ-γ coincidences,directional correlation from oriented state (DCO) ratios and γ...High spin states of 84Sr were populated through the reaction 70Zn(18O,4n)84Sr at 75 MeV beam energy.Measurement of excitation function,γ-γ coincidences,directional correlation from oriented state (DCO) ratios and γ-transition intensities were performed using eight anticompton HPGe detectors and one planar HPGe detector.Based on the measured results,a new level scheme of 84Sr was established in which 12 new states and nearly 30 new γ-transitions were identified in the present work.The positive-parity states of the new level scheme were compared with the results from calculations in the framework of the projected shell model (PSM).One negative-parity band was extended to spin Iπ=19-and it can be found that in the high spin states,the γ-transition energies show the nature of signature staggering.The negative-parity band levels are in good agreement with deformed configuration-mixing shell model (DCM) calculations.展开更多
基金Supported by the National Natural Science Foundation of China (No.19531070)
文摘In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positive periodic solutions of this model.
文摘This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.
基金The research is supported by the Scientific Research Foundation of the Doctor Department of Hubei University of Technology.
文摘The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By means of the coincidence degree theory, sufficient conditions for the existence of at least one positive periodic solution of this model are established. Moreover, The author shows that the system is uniformly persistent under the conditions.
文摘The nature and properties of dark matter and dark energy in the universe are among the outstanding open issues of modern cosmology. Despite extensive theoretical and empirical efforts, the question “what is dark matter made of?” has not been answered satisfactorily. Candidates proposed to identify particle dark matter span over ninety orders of magnitude in mass, from ultra-light bosons, to massive black holes. Dark energy is a greater enigma. It is believed to be some kind of negative vacuum energy, responsible for driving galaxies apart in accelerated motion. In this article we take a relativistic approach in theorizing about dark matter and dark energy. Our approach is based on our recently proposed Information Relativity theory. Rather than theorizing about the identities of particle dark matter candidates, we investigate the relativistic effects on large scale celestial structures at their recession from an observer on Earth. We analyze a simplified model of the universe, in which large scale celestial bodies, like galaxies and galaxy clusters, are non-charged compact bodies that recede rectilinearly along the line-of-sight of an observer on Earth. We neglect contributions to dark matter caused by the rotation of celestial structures (e.g., the rotation of galaxies) and of their constituents (e.g., rotations of stars inside galaxies). We define the mass of dark matter as the complimentary portion of the derived relativistic mass, such that at any given recession velocity the sum of the two is equal to the Newtonian mass. The emerging picture from our analysis could be summarized as follows: 1) At any given redshift, the dark matter of a receding body exists in duality to its observable matter. 2) The dynamical interaction between the dark and the observed matter is determined by the body’s recession velocity (or redshift). 3) The observable matter mass density decreases with its recession velocity, with matter transforming to dark matter. 4) For redshifts z 0.5 the universe is dominated by dark matter.
基金Supported by the China Postdoctoral Science Foundation (20060400267)
文摘We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.
基金the Scientific Research Foundation of the Doctor Department of Hubei University of Technology
文摘In this paper, we study a non-autonomous ratio-dependent predator-prey model with predator's harvest. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least two positive periodic solutions of this model.
基金supported by the Major State Basic Research Development Program in China (Grant No. 2007CB815003)the National Natural Science Foundation of China (Grant Nos. 11065001, 10547140, 10525520,60476043,10675170,10475002 and 10775064)+4 种基金the U.S. National Science Foundation (Grant No. 0500291)the Southeastern Universities Research Association,the Natural Science Foundation of Jiangxi Province (Grant Nos. 0612003 and 2007GZW0476)the LSU - LNNU Joint Research Program (Grant No. 9961)the Foundation of the Education Department of Jiangxi Province (Grant No. [2007]235)the Liaoning Education Department Fund (Grant No. 20060464)
文摘High spin states of 84Sr were populated through the reaction 70Zn(18O,4n)84Sr at 75 MeV beam energy.Measurement of excitation function,γ-γ coincidences,directional correlation from oriented state (DCO) ratios and γ-transition intensities were performed using eight anticompton HPGe detectors and one planar HPGe detector.Based on the measured results,a new level scheme of 84Sr was established in which 12 new states and nearly 30 new γ-transitions were identified in the present work.The positive-parity states of the new level scheme were compared with the results from calculations in the framework of the projected shell model (PSM).One negative-parity band was extended to spin Iπ=19-and it can be found that in the high spin states,the γ-transition energies show the nature of signature staggering.The negative-parity band levels are in good agreement with deformed configuration-mixing shell model (DCM) calculations.