In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of ...In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of the quantum states are studied. The numerical results indicate that the amplitudes, the ratio between the amplitudes of two coherent states, the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy.展开更多
Quantum secret sharing(QSS)is one of the basic communication primitives in future quantum networks which addresses part of the basic cryptographic tasks of multiparty communication and computation.Nevertheless,it is a...Quantum secret sharing(QSS)is one of the basic communication primitives in future quantum networks which addresses part of the basic cryptographic tasks of multiparty communication and computation.Nevertheless,it is a challenge to provide a practical QSS protocol with security against general attacks.A QSS protocol that balances security and practicality is still lacking.Here,we propose a QSS protocol with simple phase encoding of coherent states among three parties.Removing the requirement of impractical entangled resources and the need for phase randomization,our protocol can be implemented with accessible technology.We provide the finite-key analysis against coherent attacks and implement a proof-of-principle experiment to demonstrate our scheme’s feasibility.Our scheme achieves a key rate of 85.3 bps under a 35 d B channel loss.Combined with security against general attacks and accessible technology,our protocol is a promising candidate for practical multiparty quantum communication networks.展开更多
In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuti...In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuting operators. Addressing this issue, a nonstandard unitary transformation technique is highlighted here with new perspective. In a spirit of “quantum” series expansions, the transition probabilities between initial and final states, such as displaced, squeezed and other nonlinearly transformed coherent states are obtained both numerically and analytically. This paper concludes that, although this technique is novel, its implementations for more extended systems are needed.展开更多
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant No T0650013)
文摘In this paper the superpositions of two arbitrary coherent states |ψ〉 = α |β| + be^iψ |mβe^iδ〉 are constructed by using the superposition principle of quantum mechanics. The entropic squeezing effects of the quantum states are studied. The numerical results indicate that the amplitudes, the ratio between the amplitudes of two coherent states, the phase difference between the two components and the relative phase of the two coefficients play important roles in the squeezing effects of the position entropy and momentum entropy.
基金supported by the National Natural Science Foundation of China(Grant No.12274223)the Natural Science Foundation of Jiangsu Province(Grant No.BK20211145)+3 种基金the Fundamental Research Funds for the Central Universities(Grant No.020414380182)the Key Research and Development Program of Nanjing Jiangbei New Aera(Grant No.ZDYD20210101)the Program for Innovative Talents and Entrepreneurs in Jiangsu(Grant No.JSSCRC2021484)the Program of Songshan Laboratory(Included in the management of Major Science and Technology Program of Henan Province)(Grant No.221100210800)。
文摘Quantum secret sharing(QSS)is one of the basic communication primitives in future quantum networks which addresses part of the basic cryptographic tasks of multiparty communication and computation.Nevertheless,it is a challenge to provide a practical QSS protocol with security against general attacks.A QSS protocol that balances security and practicality is still lacking.Here,we propose a QSS protocol with simple phase encoding of coherent states among three parties.Removing the requirement of impractical entangled resources and the need for phase randomization,our protocol can be implemented with accessible technology.We provide the finite-key analysis against coherent attacks and implement a proof-of-principle experiment to demonstrate our scheme’s feasibility.Our scheme achieves a key rate of 85.3 bps under a 35 d B channel loss.Combined with security against general attacks and accessible technology,our protocol is a promising candidate for practical multiparty quantum communication networks.
文摘In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuting operators. Addressing this issue, a nonstandard unitary transformation technique is highlighted here with new perspective. In a spirit of “quantum” series expansions, the transition probabilities between initial and final states, such as displaced, squeezed and other nonlinearly transformed coherent states are obtained both numerically and analytically. This paper concludes that, although this technique is novel, its implementations for more extended systems are needed.