BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiograp...For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources,the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200 μm×200 μm,the size of neutron source as small as a few millimeters,the distance between the source and the scintillating fiber array greater than 1 m,and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.
基金Supported by the Foundation of Double-Hundred Talents of China Academy of Engineering Physics (Grant No. 2004R0301)
文摘For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources,the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200 μm×200 μm,the size of neutron source as small as a few millimeters,the distance between the source and the scintillating fiber array greater than 1 m,and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.