Ascorbic acid(AA) serves as a key coenzyme in many metabolic pathways. Enough daily AA supplements from different dietary sources are the only way for human to maintain their AA levels in body.Determination of AA co...Ascorbic acid(AA) serves as a key coenzyme in many metabolic pathways. Enough daily AA supplements from different dietary sources are the only way for human to maintain their AA levels in body.Determination of AA content in different foods guides to build healthy diet, which is of great biomedical significance. Hence, developing a highly selective and instantaneous fluorescent nanoprobe for the detection of AA in biological samples is highly needed. Here we present a novel turn-on fluorescent nanoprobe using lanthanide-doped upconversion nanoparticles(UCNPs) and cobalt oxyhydroxide(Co OOH) nanoflakes for monitoring AA in fruit samples. In this nanosystem, the UCNPs can be adsorbed onto the Co OOH nanoflakes, leading to a remarkable fluorescence decrease through Fo?rster resonance energy transfer. Furthermore, the AA could trigger the disassembly of the Co OOH to liberate the upconverted fluorescence. The UCNPs-based nanoprobe can provide an effective platform for highly selective and rapid detection of AA in biological samples.展开更多
基金supported by 973 Program (No. 2013CB933800) National Natural Science Foundation of China (Nos. 21390411, 21535004, 21422505, 21375081)Natural Science Foundation for Distinguished Young Scholars of Shandong Province (No. JQ201503)
文摘Ascorbic acid(AA) serves as a key coenzyme in many metabolic pathways. Enough daily AA supplements from different dietary sources are the only way for human to maintain their AA levels in body.Determination of AA content in different foods guides to build healthy diet, which is of great biomedical significance. Hence, developing a highly selective and instantaneous fluorescent nanoprobe for the detection of AA in biological samples is highly needed. Here we present a novel turn-on fluorescent nanoprobe using lanthanide-doped upconversion nanoparticles(UCNPs) and cobalt oxyhydroxide(Co OOH) nanoflakes for monitoring AA in fruit samples. In this nanosystem, the UCNPs can be adsorbed onto the Co OOH nanoflakes, leading to a remarkable fluorescence decrease through Fo?rster resonance energy transfer. Furthermore, the AA could trigger the disassembly of the Co OOH to liberate the upconverted fluorescence. The UCNPs-based nanoprobe can provide an effective platform for highly selective and rapid detection of AA in biological samples.