期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ERROR ESTIMATES FOR TWO-SCALE COMPOSITE FINITE ELEMENT APPROXIMATIONS OF NONLINEAR PARABOLIC EQUATIONS
1
作者 Tamal Pramanick 《Journal of Computational Mathematics》 SCIE CSCD 2021年第4期493-517,共25页
We study spatially semidiscrete and fully discrete two-scale composite nite element method for approximations of the nonlinear parabolic equations with homogeneous Dirichlet boundary conditions in a convex polygonal d... We study spatially semidiscrete and fully discrete two-scale composite nite element method for approximations of the nonlinear parabolic equations with homogeneous Dirichlet boundary conditions in a convex polygonal domain in the plane.This new class of nite elements,which is called composite nite elements,was rst introduced by Hackbusch and Sauter[Numer.Math.,75(1997),pp.447-472]for the approximation of partial di erential equations on domains with complicated geometry.The aim of this paper is to introduce an effcient numerical method which gives a lower dimensional approach for solving partial di erential equations by domain discretization method.The composite nite element method introduces two-scale grid for discretization of the domain,the coarse-scale and the ne-scale grid with the degrees of freedom lies on the coarse-scale grid only.While the ne-scale grid is used to resolve the Dirichlet boundary condition,the dimension of the nite element space depends only on the coarse-scale grid.As a consequence,the resulting linear system will have a fewer number of unknowns.A continuous,piecewise linear composite nite element space is employed for the space discretization whereas the time discretization is based on both the backward Euler and the Crank-Nicolson methods.We have derived the error estimates in the L^(∞)(L^(2))-norm for both semidiscrete and fully discrete schemes.Moreover,numerical simulations show that the proposed method is an efficient method to provide a good approximate solution. 展开更多
关键词 Composite nite elements Nonlinear parabolic problems coarse-scale Finescale Semidiscrete Fully discrete Error estimate
原文传递
粗细尺度耦合粒子滤波在多目标跟踪中的应用研究
2
作者 张京妹 翟永智 《西北工业大学学报》 EI CAS CSCD 北大核心 2008年第6期760-764,共5页
文章提出了一种进行多目标跟踪的高效率粒子滤波器算法。它利用粗细2种尺度耦合采样信号,粗尺度采样降低算法计算的复杂度;细尺度采样来保证精度,同时不用重采样来消除粒子滤波的退化现象。对信号经过粗细2种尺度处理以后,再用基于MCMC... 文章提出了一种进行多目标跟踪的高效率粒子滤波器算法。它利用粗细2种尺度耦合采样信号,粗尺度采样降低算法计算的复杂度;细尺度采样来保证精度,同时不用重采样来消除粒子滤波的退化现象。对信号经过粗细2种尺度处理以后,再用基于MCMC方法的Metroplis-Hasting采样得到多目标系统的最大似然函数参数后验满条件的分布,并对多目标系统进行实时跟踪。仿真表明该算法在处理多目标跟踪问题时具有高效率和精确性。 展开更多
关键词 多目标跟踪 粒子滤波 粗细尺度 Metroplis—Hasting采样 满条件分布
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部