CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on micro- structures and on...CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on micro- structures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature.展开更多
Using (Ti(OC_4H_9)_4) and metal chlorates as starting materials, CoFe_2O_4/TiO_2 composite films were pre-pared by sol-gel method. The effects of heat treatment temperature and pH of the precursor on micro-structure a...Using (Ti(OC_4H_9)_4) and metal chlorates as starting materials, CoFe_2O_4/TiO_2 composite films were pre-pared by sol-gel method. The effects of heat treatment temperature and pH of the precursor on micro-structure and magnetic properties were studied. The phase structure of the samples was examined by X-ray diffraction. The microstructure was examined by scanning electron microscope, atomic force microscope and polarized microscope. The magnetic property was measured by vibrating sample magnetometer. The results show that the crystals of different phases grow up independently. CoFe_2O_4 is uniformly embedded into the TiO_2 matrix in the prepared composite films, and the growth of com-posite films is dependent on the heat treatment temperatures and PH of the precursor. The average size of CoFe_2O_4 crystal is 19 nm in Nanocomposite film prepared when the heat treatment temperature is 800℃ and the pH of the precursor is between 2 and 3. The magnetism of the composite films is en-hanced as the heat treatment temperature increases.展开更多
Composite photocatalysts of CuO/CoFe2O4-TiO2 were successfully synthesized by a sol-gel method and fixed on ordinary tiles. The photosterilization of Escherichia coli was examined on CuO/CoFe2O4-TiO2 thin films under ...Composite photocatalysts of CuO/CoFe2O4-TiO2 were successfully synthesized by a sol-gel method and fixed on ordinary tiles. The photosterilization of Escherichia coli was examined on CuO/CoFe2O4-TiO2 thin films under a xenon lamp irradiation. The film was characterized by XRD, and the morphology was observed by SEM. Disinfection data indicated that CuO/CoFe2O4-TiO2 composite photocatalysts have the much better photocatalytic activity than CuO/CoFe2O4 and TiO2. The optimized composition of the nanocomposites has been found to be CuO/CoFe2O4: mTio2=3:7, with loadings ranging from 790 to 1400 mg/m2. The photocatalytic inactivated rate of E. coli (105 CFU/mL) reached 98.4% under the xenon lamp of 150 W within 30 min.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 50632030 and 10474077)the Natural Science Foundation of Shaanxi Province (Grant No. 2006E135)
文摘CoFe2O4/TiO2 magnetic composite films were prepared using the sol-gel method with tetrabutyltitanate and metallic chlorates as starting materials. The effects of heat treatment temperatures on micro- structures and on magnetic properties were studied. The microstructure and properties of the samples at different heat treatment temperatures were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, polarized microscopy and vibrating sample magnetometry. The results show that crystals of different substances grow up independently. Cobalt ferrite is evenly embedded into the titanium dioxide matrix in the prepared composite films. The magnetism of the composite films is enhanced with an increase of the heat temperature.
基金the National Natural Science Foundation of China (Grant Nos.50632030 and 10474077)the Natural Science Foundation of Shaanxi Province (Grant No.2006E135)
文摘Using (Ti(OC_4H_9)_4) and metal chlorates as starting materials, CoFe_2O_4/TiO_2 composite films were pre-pared by sol-gel method. The effects of heat treatment temperature and pH of the precursor on micro-structure and magnetic properties were studied. The phase structure of the samples was examined by X-ray diffraction. The microstructure was examined by scanning electron microscope, atomic force microscope and polarized microscope. The magnetic property was measured by vibrating sample magnetometer. The results show that the crystals of different phases grow up independently. CoFe_2O_4 is uniformly embedded into the TiO_2 matrix in the prepared composite films, and the growth of com-posite films is dependent on the heat treatment temperatures and PH of the precursor. The average size of CoFe_2O_4 crystal is 19 nm in Nanocomposite film prepared when the heat treatment temperature is 800℃ and the pH of the precursor is between 2 and 3. The magnetism of the composite films is en-hanced as the heat treatment temperature increases.
基金Project supported by the Natural Science Foundation of China (No. 20876039) Aid Program for Science and Technology Innovative Research Team in Higher Educational Instituions of Hunan Province.
文摘Composite photocatalysts of CuO/CoFe2O4-TiO2 were successfully synthesized by a sol-gel method and fixed on ordinary tiles. The photosterilization of Escherichia coli was examined on CuO/CoFe2O4-TiO2 thin films under a xenon lamp irradiation. The film was characterized by XRD, and the morphology was observed by SEM. Disinfection data indicated that CuO/CoFe2O4-TiO2 composite photocatalysts have the much better photocatalytic activity than CuO/CoFe2O4 and TiO2. The optimized composition of the nanocomposites has been found to be CuO/CoFe2O4: mTio2=3:7, with loadings ranging from 790 to 1400 mg/m2. The photocatalytic inactivated rate of E. coli (105 CFU/mL) reached 98.4% under the xenon lamp of 150 W within 30 min.