以对苯二甲酸(H_2BDC)为配体、乙酸钴为Co源、水作溶剂,通过共沉淀法合成了金属有机框架材料(Co-BDC M OFs);以其为前驱体分别在乙炔和氩气氛下采用化学气相沉积法制备了核壳结构Co@C催化剂。结合XRD、氮吸附、SEM、TEM、XPS、TGA和Rama...以对苯二甲酸(H_2BDC)为配体、乙酸钴为Co源、水作溶剂,通过共沉淀法合成了金属有机框架材料(Co-BDC M OFs);以其为前驱体分别在乙炔和氩气氛下采用化学气相沉积法制备了核壳结构Co@C催化剂。结合XRD、氮吸附、SEM、TEM、XPS、TGA和Raman光谱等手段对Co@C催化剂的结构和组成进行了表征,考察了该催化剂在费托合成反应中的活性及稳定性。结果表明,炭化气氛对炭层结构的石墨化程度有较大影响,而对金属Co核的物相结构和粒径影响较小;乙炔气氛有助于形成多孔的石墨炭壳,从而促进烃链的生长,Co@C-C_2H_2催化剂上的C_(5+)烃产物选择性高达82. 66%,反应过程中催化剂物相由单相金属Co转变为金属Co与Co_2C的混合相,且无失活现象发生,表明Co_2C具有较高的费托反应催化活性。展开更多
The liquid phase selective hydrogenation of cinnamaldehyde has been investigated over the catalysts Co-C-T(T=400-700℃),which were derived from the carbonization of the MOF precursor Co-BTC at different temperatures i...The liquid phase selective hydrogenation of cinnamaldehyde has been investigated over the catalysts Co-C-T(T=400-700℃),which were derived from the carbonization of the MOF precursor Co-BTC at different temperatures in inert atmosphere.Co-C-500 exhibited a higher conversion(85.3%)than those carbonized at other temperatures,with 51.5%selectivity to cinnamyl alcohol,under a mild condition(90℃,4 h,2 MPa H_(2),solvent:9 ml ethanol and 1 ml water).The high catalytic activity of Co-C-500 can be ascribed to the large specific surface area of the catalyst,the uniformly dispersed metallic cobalt nanoparticles,and the more defect sites on the carbon support.Moreover,Co-C-500 showed excellent reusability in 5 successive cycles,mainly related to the uniformly dispersed cobalt nanoparticles embedded in carbon support.展开更多
Constructing three-dimensional(3D)foam-like structure in magnetic metal/carbon composites is regarded as a promising pathway to reinforce their electromagnetic(EM)functions.Herein,a nitrateassisted polymer-bubbling st...Constructing three-dimensional(3D)foam-like structure in magnetic metal/carbon composites is regarded as a promising pathway to reinforce their electromagnetic(EM)functions.Herein,a nitrateassisted polymer-bubbling strategy is reported for the synthesis of Co/carbon foams,which is simply accomplished by direct pyrolyzing the mixture of polyvinylpyrrolidone(PVP)and cobalt nitrate hexahydrate(Co(NO_(3))_(2)·6 H_(2) O).Co(NO_(3))_(2)·6H_(2)O not only plays as the source of Co nanoparticles,but also accounts for the formation of 3D microstructure through releasing gas.By manipulating the weight ratio of Co(NO_(3))_(2)·6H_(2)O to PVP,the chemical composition,microstructure,and EM properties of these composites can be easily regulated.When the weight ratio reaches 1.5,the resultant composite displays good microwave absorption performance,whose reflection loss intensity and effective absorption bandwidth are superior to those of many common Co/C composites.EM analysis reveals that such architecture is greatly helpful to establish cross-linked conductive networks in the wax matrix,resulting in powerful dielectric loss under low absorber loading.Meanwhile,3D microstructure is also beneficial for multiple reflections that equal to extend the transmission path of incident EM waves.Simple synthesis strategy and desirable properties of these magnetic carbon foams may render them as the low-cost substitute of 3D graphene for the application against EM pollution.展开更多
Amorphous CoxC1-x granular films were prepared on n-Si(100) substrate by dc magnetron sputtering. The effects of Co con- centration, film thickness and annealing temperature on the magnetic properties and magnetores...Amorphous CoxC1-x granular films were prepared on n-Si(100) substrate by dc magnetron sputtering. The effects of Co con- centration, film thickness and annealing temperature on the magnetic properties and magnetoresistance (MR) were investigated After annealing at 500℃ for 0.5 hour, the Co(002) peak of the CoxC1-x(x〉2.5 at.%) films was observed, but cracks appeared in the films. Saturation magnetization Ms increased steadily with the increase of Co concentration from 2.5 at.% to 50 at.% and also increased with annealing temperature from room temperature to 400℃. The coercivity of CoxC1-x films was less than 180 Oe. The as-deposited Co2.5C97.5 granular films with 80 nm thickness showed a highly positive MR, up to 15.5% at a magnetic field of 0.8 T, observed at T=300 K when the external magnetic field was perpendicular to the film surface. With increasing film thickness and annealing temperature, the value of MR was found to decrease gradually and changed from positive to neg- ative. The MR effect of the CoxC1-x granular films can be explained by p-n heterojunction theory and interface scattering ef- fect.展开更多
Transition metal carbide (TMC) nanomaterials are promising alternatives to Pt, and are widely used as heterogeneous electrocatalysts for the electrochemical hydrogen evolution reaction (HER). In this work, a bromi...Transition metal carbide (TMC) nanomaterials are promising alternatives to Pt, and are widely used as heterogeneous electrocatalysts for the electrochemical hydrogen evolution reaction (HER). In this work, a bromide-induced wet-chemistry strategy to synthesize Co2C nanoparticles (NPs) was developed. Such NPs exhibited high electrocatalytic activity (η= 181 mV for j = -10 mA·cm^-2) and long-term stability (no obvious performance decrease after 4,000 cycles) for the HER. This study will pave the way for the design and fabrication of TMC NPs via a wet- chemistry method, and will have significant impacts on broader areas such as nanocatalysis and energy conversion.展开更多
Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)posses...Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.展开更多
As a lot of electromagnetic pollution and interference issues have emerged,to overcome electromagnetic interference,prevent electromagnetic hazards,and develop new high-performance electromagnetic wave(EMW)absorbers h...As a lot of electromagnetic pollution and interference issues have emerged,to overcome electromagnetic interference,prevent electromagnetic hazards,and develop new high-performance electromagnetic wave(EMW)absorbers have become a significant task in the field of materials science.In this paper,a three-dimensional(3D)carbon nanofibers network with core-shell structure,embedded with varied molar ratios of iron and cobalt(4:0,3:1,2:2,1:3,0:4),was effectively synthesized(Fe/Co@C-CNFs)via electrospinning.The phase,microstructure,magnetic and EMW absorption properties were studied.It is discovered that Fe/Co@C-CNFs doped with iron:cobalt=1:1 have excellent EMW absorption capacity.When the matching thickness is 1.08 mm,the minimum reflection loss(RL)value is-18.66 dB,while the maximum effective absorption bandwidth(EAB)reaches 4.2 GHz(13.9-18 GHz)at a thickness of 1.22 mm.This is owing to the absorbers'superior impedance matching and multiple reflections as well as the conductivity,dielectric,and magnetic losses of carbon nanofibers embedded with Fe-Co alloy particles.In addition,the radar cross section(RCS)of the absorbers has been calculated by CST Studio Suite,showing that the absorbing coating can effectively reduce the RCS at various angles,especially for Fe/Co@C-CNFs doped with iron:cobalt=1:1.These findings not only provide new insights for the preparation of light-weight and high-performance electromagnetic wave absorbers,but also contribute to energy storage and conversion.展开更多
文摘以对苯二甲酸(H_2BDC)为配体、乙酸钴为Co源、水作溶剂,通过共沉淀法合成了金属有机框架材料(Co-BDC M OFs);以其为前驱体分别在乙炔和氩气氛下采用化学气相沉积法制备了核壳结构Co@C催化剂。结合XRD、氮吸附、SEM、TEM、XPS、TGA和Raman光谱等手段对Co@C催化剂的结构和组成进行了表征,考察了该催化剂在费托合成反应中的活性及稳定性。结果表明,炭化气氛对炭层结构的石墨化程度有较大影响,而对金属Co核的物相结构和粒径影响较小;乙炔气氛有助于形成多孔的石墨炭壳,从而促进烃链的生长,Co@C-C_2H_2催化剂上的C_(5+)烃产物选择性高达82. 66%,反应过程中催化剂物相由单相金属Co转变为金属Co与Co_2C的混合相,且无失活现象发生,表明Co_2C具有较高的费托反应催化活性。
基金financial support from the National Natural Science Foundation of China(22272016).
文摘The liquid phase selective hydrogenation of cinnamaldehyde has been investigated over the catalysts Co-C-T(T=400-700℃),which were derived from the carbonization of the MOF precursor Co-BTC at different temperatures in inert atmosphere.Co-C-500 exhibited a higher conversion(85.3%)than those carbonized at other temperatures,with 51.5%selectivity to cinnamyl alcohol,under a mild condition(90℃,4 h,2 MPa H_(2),solvent:9 ml ethanol and 1 ml water).The high catalytic activity of Co-C-500 can be ascribed to the large specific surface area of the catalyst,the uniformly dispersed metallic cobalt nanoparticles,and the more defect sites on the carbon support.Moreover,Co-C-500 showed excellent reusability in 5 successive cycles,mainly related to the uniformly dispersed cobalt nanoparticles embedded in carbon support.
基金financially supported by the National Natural Science Foundation of China(Nos.21676065,21776053)。
文摘Constructing three-dimensional(3D)foam-like structure in magnetic metal/carbon composites is regarded as a promising pathway to reinforce their electromagnetic(EM)functions.Herein,a nitrateassisted polymer-bubbling strategy is reported for the synthesis of Co/carbon foams,which is simply accomplished by direct pyrolyzing the mixture of polyvinylpyrrolidone(PVP)and cobalt nitrate hexahydrate(Co(NO_(3))_(2)·6 H_(2) O).Co(NO_(3))_(2)·6H_(2)O not only plays as the source of Co nanoparticles,but also accounts for the formation of 3D microstructure through releasing gas.By manipulating the weight ratio of Co(NO_(3))_(2)·6H_(2)O to PVP,the chemical composition,microstructure,and EM properties of these composites can be easily regulated.When the weight ratio reaches 1.5,the resultant composite displays good microwave absorption performance,whose reflection loss intensity and effective absorption bandwidth are superior to those of many common Co/C composites.EM analysis reveals that such architecture is greatly helpful to establish cross-linked conductive networks in the wax matrix,resulting in powerful dielectric loss under low absorber loading.Meanwhile,3D microstructure is also beneficial for multiple reflections that equal to extend the transmission path of incident EM waves.Simple synthesis strategy and desirable properties of these magnetic carbon foams may render them as the low-cost substitute of 3D graphene for the application against EM pollution.
基金supported by the National Natural Science Foundation of China (Grant No. U0734001)the Fundamental Research Funds for the Central Universities, South China University Of Technology (Grant No. 2009ZM0247)
文摘Amorphous CoxC1-x granular films were prepared on n-Si(100) substrate by dc magnetron sputtering. The effects of Co con- centration, film thickness and annealing temperature on the magnetic properties and magnetoresistance (MR) were investigated After annealing at 500℃ for 0.5 hour, the Co(002) peak of the CoxC1-x(x〉2.5 at.%) films was observed, but cracks appeared in the films. Saturation magnetization Ms increased steadily with the increase of Co concentration from 2.5 at.% to 50 at.% and also increased with annealing temperature from room temperature to 400℃. The coercivity of CoxC1-x films was less than 180 Oe. The as-deposited Co2.5C97.5 granular films with 80 nm thickness showed a highly positive MR, up to 15.5% at a magnetic field of 0.8 T, observed at T=300 K when the external magnetic field was perpendicular to the film surface. With increasing film thickness and annealing temperature, the value of MR was found to decrease gradually and changed from positive to neg- ative. The MR effect of the CoxC1-x granular films can be explained by p-n heterojunction theory and interface scattering ef- fect.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Nos. 21473003 and 21303119) and the National Basic Research Program of China (No. 2013CB933100). C. Y. acknowledges the financial support of China Postdoctoral Science Foundation (No. 2015M580011). XAS analysis was performed at the Beijing Synchrotron Radiation Fadlity.
文摘Transition metal carbide (TMC) nanomaterials are promising alternatives to Pt, and are widely used as heterogeneous electrocatalysts for the electrochemical hydrogen evolution reaction (HER). In this work, a bromide-induced wet-chemistry strategy to synthesize Co2C nanoparticles (NPs) was developed. Such NPs exhibited high electrocatalytic activity (η= 181 mV for j = -10 mA·cm^-2) and long-term stability (no obvious performance decrease after 4,000 cycles) for the HER. This study will pave the way for the design and fabrication of TMC NPs via a wet- chemistry method, and will have significant impacts on broader areas such as nanocatalysis and energy conversion.
基金financially supported by the Project of National Natural Science Foundation of China(No.5202780089)。
文摘Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.
基金financially supported by the National Natural Science Foundation of China(No.52272117)the National Key Research and Development Program of China(Nos.2022YFB3505104 and 2022YFB3706604)the Key Research and Development Program of Shandong Province(No.2022TSGC2322)。
文摘As a lot of electromagnetic pollution and interference issues have emerged,to overcome electromagnetic interference,prevent electromagnetic hazards,and develop new high-performance electromagnetic wave(EMW)absorbers have become a significant task in the field of materials science.In this paper,a three-dimensional(3D)carbon nanofibers network with core-shell structure,embedded with varied molar ratios of iron and cobalt(4:0,3:1,2:2,1:3,0:4),was effectively synthesized(Fe/Co@C-CNFs)via electrospinning.The phase,microstructure,magnetic and EMW absorption properties were studied.It is discovered that Fe/Co@C-CNFs doped with iron:cobalt=1:1 have excellent EMW absorption capacity.When the matching thickness is 1.08 mm,the minimum reflection loss(RL)value is-18.66 dB,while the maximum effective absorption bandwidth(EAB)reaches 4.2 GHz(13.9-18 GHz)at a thickness of 1.22 mm.This is owing to the absorbers'superior impedance matching and multiple reflections as well as the conductivity,dielectric,and magnetic losses of carbon nanofibers embedded with Fe-Co alloy particles.In addition,the radar cross section(RCS)of the absorbers has been calculated by CST Studio Suite,showing that the absorbing coating can effectively reduce the RCS at various angles,especially for Fe/Co@C-CNFs doped with iron:cobalt=1:1.These findings not only provide new insights for the preparation of light-weight and high-performance electromagnetic wave absorbers,but also contribute to energy storage and conversion.