This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at t...This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at three positions: contact detonation in the center, contact detonation above the web and close-in detonation in the center. The external and internal breach parameters of the panels were evaluated by measuring the diameter of the ejection crater, spalling crater and breach hole created by the charge detonation. The experimental results were compared to predict values obtained by the analytical models proposed by McVay, Morishita and Remennikov. A modified breach with crater limit line and breach without crater limit line were put forward based on the experimental results. The maximum cross-sectional destruction area ratio(MCDAR) values were used to evaluate the damage degree. The maximum value of MCDAR reached 0.331 corresponding to the C5 experimental condition, of which explosion occurred above the web.展开更多
In recent decades,the increase in terrorist attacks highlights the necessity and importance of understanding of structural performance under accidental and intentionally malicious blast loads.As an important part of t...In recent decades,the increase in terrorist attacks highlights the necessity and importance of understanding of structural performance under accidental and intentionally malicious blast loads.As an important part of transportation infrastructure,bridges would inevitably suffer explosion hazards especially close-in explosion.Reinforced concrete(RC)bridge column is the most critical components of bridge structures,which is more prone to severe local damage under the action of close-in blast loading and can lead to progressive collapse with catastrophic consequences in most cases.Therefore,the blast performance of RC bridge columns under close-in explosions is of particular concern.Towards a better RC bridge column protection against close-in blast loadings,efforts have been mainly devoted to understanding dynamic response predictions of RC columns,numerical simulation techniques of close-in explosion and damage assessment of blast-damaged RC columns.This article presents a state-of-the-art review of the research status of RC columns subjected to close-in blast loads.The blast loading,experimental study and failure mode,uncoupled and coupled simulation method,damage assessment based on residual axial capacity,vulnerability analysis and machine learning are considered and reviewed.The merits and defects of the existing approaches are discussed,and some suggestions for possible improvement are proposed.Further investigation into the future development of this topic has also been identified.展开更多
The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on...The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on the structural component and may cause both local and structural failure. In this study,an experimental study was conducted to investigate the dynamic responses of RC beams under doubleend-initiated close-in explosions. The experimental results show that the distribution of blast loads generated by the double-end-initiated explosion is much more non-uniform than those generated by single-point detonation, which is caused by the self-Mach-reflection effects. A 3 D finite element model was developed and validated in LS-DYNA by employing the modified K&C model. Intensive numerical calculations were conducted to study the influences of the initiation way, scaled distance and longitudinal reinforcement ratio on the dynamic responses and failure modes of RC beams. Numerical results show that the RC beam suffers greater damage as the cylindrical explosive is detonated at its double ends than the scenario in which the cylindrical explosive is detonated at its central point. RC beams mainly suffer flexural failure and flexure-shear failure under the double-end close-in explosion, and the failure modes of RC beams change from the flexural damage to flexure-shear damage as the scaled distance or the longitudinal reinforcement ratio decreases. The direct shear failure mode is not usually observed in the double-end-initiated explosion, since the intense blast loads is basically concentrated in the midspan of RC beam, which is due to self-Mach-reflection enhancement.展开更多
In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculatio...In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculation method.The equivalent uniform specific impulse was obtained based on the local conservation of momentum and global conservation of kinetic energy.Additionally,the influence of load uniformity,boundary condition and complex material behaviors(e.g.strain rate effect,hardening/softening and hoop-confined effect)was considered in the resistance calculation process by establishing a novel relationship between external force,bending moment,curvature and deflection successively.The accuracy of the proposed model was verified by carrying out field explosion tests on four RC beams with the scaled distances of 0.5 m/kg~(1/3)and 0.75 m/kg~(1/3).The test data in other literatures were also used for validation.As a result,the equivalent load implies that the blast load near the mid-span of beams would contribute more to the maximum displacement,which was also observed in the tests.Moreover,both the resistance model and test results declare that when the blast load becomes more concentrated,the ultimate resistance would become lower,and the compressive concrete would be more prone to softening and crushing.Finally,based on the modified SDOF model,the calculated maximum displacements agreed well with the test data in this paper and other literatures.This work fully proves the rationality of the modified SDOF method,which will contribute to a more accurate damage assessment of RC structures under close-in explosion.展开更多
The performance of multilayered thin steel plates subjected to close-range air blasts has been experimentally studied and compared with that of monolithic plates made of the same material and having equal mass. In pre...The performance of multilayered thin steel plates subjected to close-range air blasts has been experimentally studied and compared with that of monolithic plates made of the same material and having equal mass. In present experiments, multilayered plates are in-contact four-layered thin steel plates and two types of deformation/failure modes were observed for them. Comparisons concerning deformation/failure modes, strain distributions and energy absorptions between the multilayered plate and its monolithic counterpart were conducted. It is found that the multilayered plate is much superior to its monolithic counterpart in the ability to deform against blast loading. Furthermore, under intense airblast loading, the multilayered plate can not only absorb much more energy but also effectively reduce the secondary destruction ability of structural fragments in comparison with its monolithic counterpart.展开更多
基金supported by The National Natural Science Foundation of China under Grant No.11390362 and No. 11221202
文摘This paper presents the results of an experimental investigation on explosive breaching of p-section concrete beams. Twenty three p-section concrete beams with a 100 cm length were tested. TNT charges were placed at three positions: contact detonation in the center, contact detonation above the web and close-in detonation in the center. The external and internal breach parameters of the panels were evaluated by measuring the diameter of the ejection crater, spalling crater and breach hole created by the charge detonation. The experimental results were compared to predict values obtained by the analytical models proposed by McVay, Morishita and Remennikov. A modified breach with crater limit line and breach without crater limit line were put forward based on the experimental results. The maximum cross-sectional destruction area ratio(MCDAR) values were used to evaluate the damage degree. The maximum value of MCDAR reached 0.331 corresponding to the C5 experimental condition, of which explosion occurred above the web.
基金financial support provided by the National Natural Science Foundation of China(Grant Nos.52008031,52178462,52208469)the financial supports from National Key Research and Development Program of China(Grant No.2021YFC3100700)Fundamental Research Funds for the Central Universities,CHD(Grant No.300102213201)。
文摘In recent decades,the increase in terrorist attacks highlights the necessity and importance of understanding of structural performance under accidental and intentionally malicious blast loads.As an important part of transportation infrastructure,bridges would inevitably suffer explosion hazards especially close-in explosion.Reinforced concrete(RC)bridge column is the most critical components of bridge structures,which is more prone to severe local damage under the action of close-in blast loading and can lead to progressive collapse with catastrophic consequences in most cases.Therefore,the blast performance of RC bridge columns under close-in explosions is of particular concern.Towards a better RC bridge column protection against close-in blast loadings,efforts have been mainly devoted to understanding dynamic response predictions of RC columns,numerical simulation techniques of close-in explosion and damage assessment of blast-damaged RC columns.This article presents a state-of-the-art review of the research status of RC columns subjected to close-in blast loads.The blast loading,experimental study and failure mode,uncoupled and coupled simulation method,damage assessment based on residual axial capacity,vulnerability analysis and machine learning are considered and reviewed.The merits and defects of the existing approaches are discussed,and some suggestions for possible improvement are proposed.Further investigation into the future development of this topic has also been identified.
基金supported by the National Natural Science Foundations of China(Nos. 51622812, and 51427807)National Basic Research Program of China(No. 2015CB058003)China Postdoctoral Science Foundation(No. 2017M613379)
文摘The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on the structural component and may cause both local and structural failure. In this study,an experimental study was conducted to investigate the dynamic responses of RC beams under doubleend-initiated close-in explosions. The experimental results show that the distribution of blast loads generated by the double-end-initiated explosion is much more non-uniform than those generated by single-point detonation, which is caused by the self-Mach-reflection effects. A 3 D finite element model was developed and validated in LS-DYNA by employing the modified K&C model. Intensive numerical calculations were conducted to study the influences of the initiation way, scaled distance and longitudinal reinforcement ratio on the dynamic responses and failure modes of RC beams. Numerical results show that the RC beam suffers greater damage as the cylindrical explosive is detonated at its double ends than the scenario in which the cylindrical explosive is detonated at its central point. RC beams mainly suffer flexural failure and flexure-shear failure under the double-end close-in explosion, and the failure modes of RC beams change from the flexural damage to flexure-shear damage as the scaled distance or the longitudinal reinforcement ratio decreases. The direct shear failure mode is not usually observed in the double-end-initiated explosion, since the intense blast loads is basically concentrated in the midspan of RC beam, which is due to self-Mach-reflection enhancement.
基金National Natural Science Foundation of China(Grant No.12102337)to provide fund for conducting experiments。
文摘In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculation method.The equivalent uniform specific impulse was obtained based on the local conservation of momentum and global conservation of kinetic energy.Additionally,the influence of load uniformity,boundary condition and complex material behaviors(e.g.strain rate effect,hardening/softening and hoop-confined effect)was considered in the resistance calculation process by establishing a novel relationship between external force,bending moment,curvature and deflection successively.The accuracy of the proposed model was verified by carrying out field explosion tests on four RC beams with the scaled distances of 0.5 m/kg~(1/3)and 0.75 m/kg~(1/3).The test data in other literatures were also used for validation.As a result,the equivalent load implies that the blast load near the mid-span of beams would contribute more to the maximum displacement,which was also observed in the tests.Moreover,both the resistance model and test results declare that when the blast load becomes more concentrated,the ultimate resistance would become lower,and the compressive concrete would be more prone to softening and crushing.Finally,based on the modified SDOF model,the calculated maximum displacements agreed well with the test data in this paper and other literatures.This work fully proves the rationality of the modified SDOF method,which will contribute to a more accurate damage assessment of RC structures under close-in explosion.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51179200 and 51209211)the Innovation Research Foundation for Ph. D Candidates of Naval University of Engineering, China (Grant No. HGYJSJJ2012001)
文摘The performance of multilayered thin steel plates subjected to close-range air blasts has been experimentally studied and compared with that of monolithic plates made of the same material and having equal mass. In present experiments, multilayered plates are in-contact four-layered thin steel plates and two types of deformation/failure modes were observed for them. Comparisons concerning deformation/failure modes, strain distributions and energy absorptions between the multilayered plate and its monolithic counterpart were conducted. It is found that the multilayered plate is much superior to its monolithic counterpart in the ability to deform against blast loading. Furthermore, under intense airblast loading, the multilayered plate can not only absorb much more energy but also effectively reduce the secondary destruction ability of structural fragments in comparison with its monolithic counterpart.