本文首先得到了SL(2,Γ_n)中Klein群的一个不等武,并给出了它的两个应用;然后证明了对SL(2,Γ_n)中的非初等群G,若G中的任意斜驶元素f满足tr^2(f)>4且当∞■fix(f)时tr(f)=tr(f),则存在h∈SL(2,Γn)使得hGh^(-1) C SL(2,R).此结果是M...本文首先得到了SL(2,Γ_n)中Klein群的一个不等武,并给出了它的两个应用;然后证明了对SL(2,Γ_n)中的非初等群G,若G中的任意斜驶元素f满足tr^2(f)>4且当∞■fix(f)时tr(f)=tr(f),则存在h∈SL(2,Γn)使得hGh^(-1) C SL(2,R).此结果是Maskit相关结果的推广.展开更多
For any element a in a generalized 2^n-dimensional Clifford algebra Lln (F) over an arbitrary field F of characteristic not equal to two, it is shown that there exits a universal invertible matrix Pn over Lln(F) s...For any element a in a generalized 2^n-dimensional Clifford algebra Lln (F) over an arbitrary field F of characteristic not equal to two, it is shown that there exits a universal invertible matrix Pn over Lln(F) such that Pn^-1DnPn= φ(α)∈F^2n×2n, where φ(a) is a matrix representation of α over and Dα is a diagonal matrix consisting of a or its conjugate.展开更多
基金Supported by the Natural Science Foundation of China (10771059)the Natural Science Foundation of Hunan Province(05JJ10001)Program for the New Century Excellent Talents in University (04 -0783)
基金The research was partly supported by NSFs of China and Zhejiang Province, Soft Project, of ScienceTechnology of Hunan Province and the Foundation for Scholars back from Foreign Countries
文摘本文首先得到了SL(2,Γ_n)中Klein群的一个不等武,并给出了它的两个应用;然后证明了对SL(2,Γ_n)中的非初等群G,若G中的任意斜驶元素f满足tr^2(f)>4且当∞■fix(f)时tr(f)=tr(f),则存在h∈SL(2,Γn)使得hGh^(-1) C SL(2,R).此结果是Maskit相关结果的推广.
文摘For any element a in a generalized 2^n-dimensional Clifford algebra Lln (F) over an arbitrary field F of characteristic not equal to two, it is shown that there exits a universal invertible matrix Pn over Lln(F) such that Pn^-1DnPn= φ(α)∈F^2n×2n, where φ(a) is a matrix representation of α over and Dα is a diagonal matrix consisting of a or its conjugate.