期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
采用分类经验回放的深度确定性策略梯度方法 被引量:12
1
作者 时圣苗 刘全 《自动化学报》 EI CAS CSCD 北大核心 2022年第7期1816-1823,共8页
深度确定性策略梯度(Deep deterministic policy gradient,DDPG)方法在连续控制任务中取得了良好的性能表现.为进一步提高深度确定性策略梯度方法中经验回放机制的效率,提出分类经验回放方法,并采用两种方式对经验样本分类:基于时序差... 深度确定性策略梯度(Deep deterministic policy gradient,DDPG)方法在连续控制任务中取得了良好的性能表现.为进一步提高深度确定性策略梯度方法中经验回放机制的效率,提出分类经验回放方法,并采用两种方式对经验样本分类:基于时序差分误差样本分类的深度确定性策略梯度方法(DDPG with temporal difference-error classification,TDCDDPG)和基于立即奖赏样本分类的深度确定性策略梯度方法(DDPG with reward classification,RC-DDPG).在TDCDDPG和RC-DDPG方法中,分别使用两个经验缓冲池,对产生的经验样本按照重要性程度分类存储,网络模型训练时通过选取较多重要性程度高的样本加快模型学习.在连续控制任务中对分类经验回放方法进行测试,实验结果表明,与随机选取经验样本的深度确定性策略梯度方法相比,TDC-DDPG和RC-DDPG方法具有更好的性能. 展开更多
关键词 连续控制任务 深度确定性策略梯度 经验回放 分类经验回放
下载PDF
基于情节经验回放的深度确定性策略梯度方法 被引量:8
2
作者 张建行 刘全 《计算机科学》 CSCD 北大核心 2021年第10期37-43,共7页
强化学习中的连续控制问题一直是近年来的研究热点。深度确定性策略梯度(Deep Deterministic Policy Gradients,DDPG)算法在连续控制任务中表现优异。DDPG算法利用经验回放机制训练网络模型,为了进一步提高经验回放机制在DDPG算法中的效... 强化学习中的连续控制问题一直是近年来的研究热点。深度确定性策略梯度(Deep Deterministic Policy Gradients,DDPG)算法在连续控制任务中表现优异。DDPG算法利用经验回放机制训练网络模型,为了进一步提高经验回放机制在DDPG算法中的效率,将情节累积回报作为样本分类依据,提出一种基于情节经验回放的深度确定性策略梯度(Deep Determinis-tic Policy Gradient with Episode Experience Replay,EER-DDPG)方法。首先,将经验样本以情节为单位进行存储,根据情节累积回报大小使用两个经验缓冲池分类存储。然后,在网络模型训练阶段着重对累积回报较大的样本进行采样,以提升训练质量。在连续控制任务中对该方法进行实验验证,并与采取随机采样的DDPG方法、置信区域策略优化(Trust Region Policy Optimization,TRPO)方法以及近端策略优化(Proximal Policy Optimization,PPO)方法进行比较。实验结果表明,EER-DDPG方法有更好的性能表现。 展开更多
关键词 深度确定性策略梯度 连续控制任务 经验回放 累积回报 分类经验回放
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部