期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
儿童癫痫的诊治进展 被引量:16
1
作者 穆青青 丁传刚 《医学综述》 2020年第15期3012-3016,3022,共6页
癫痫是一种长期、慢性、反复出现的发作性疾病。癫痫病因复杂,还可造成不可逆的脑功能障碍甚至死亡。儿童癫痫的治疗是一项复杂、耐心、长期的工作,其治疗以药物治疗为主。对于癫痫的诊断及分类近年来国际抗癫痫联盟已经进行了更新,如... 癫痫是一种长期、慢性、反复出现的发作性疾病。癫痫病因复杂,还可造成不可逆的脑功能障碍甚至死亡。儿童癫痫的治疗是一项复杂、耐心、长期的工作,其治疗以药物治疗为主。对于癫痫的诊断及分类近年来国际抗癫痫联盟已经进行了更新,如氯酪蛋白、左卡尼汀、大麻二酚、生酮饮食等药物及饮食治疗逐渐应用于或即将应用于临床。因为癫痫发病机制复杂,很多药物作用机制尚不明确,所以仍需进行深入探究。未来,需要更多更大样本的试验来进一步证实及探索。 展开更多
关键词 儿童癫痫 诊断 癫痫分类 药物治疗 生酮饮食
下载PDF
Detection of Epilepsy Cases in Newborns
2
作者 Gérard Behou N’Guessan Kouassi Saha Bernard +1 位作者 Coulibaly Tiékoura Diarra Bassira 《Engineering(科研)》 CAS 2023年第2期134-142,共9页
Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even de... Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even death. Curing epilepsy requires risky surgery. If not, the patient may be subjected to a long drug treatment associated with lifestyle advice without guarantee of total recovery. However, regardless of the type of treatment performed, late treatment necessarily creates psychological instability in the patient. It is therefore important to be able to diagnose the disease as early as possible if we desire that the patient does not suffer from its consequences on their mental health. That is why the study aims to propose a model for detecting epilepsy in order to be able to identify it as early as possible, especially in newborns. The objective of the article is to propose a model for detecting epilepsy using data from electroencephalogram signals from 10 newborns. This model developed using the extra trees classifier technique offers the possibility of predicting epilepsy in infants with an accuracy of around 99.4%. 展开更多
关键词 Neonatal epilepsy Electroencephalogram Signal Supervised classification Random Forest Extratrees Gradient Boosting Tree
下载PDF
Approximate entropy and support vector machines for electroencephalogram signal classification 被引量:3
3
作者 Zhen Zhang Yi Zhou +3 位作者 Ziyi Chen Xianghua Tian Shouhong Du Ruimei Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第20期1844-1852,共9页
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate ... The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy. 展开更多
关键词 neural regeneration brain injury epilepsy ELECTROENCEPHALOGRAM nonlinear dynamics approximate entropy support vector machine automatic real-time detection classification GENERALIZATION grants-supported paper NEUROREGENERATION
下载PDF
Traditional Chinese Herbal Medicine for Epilepsy Treatment Should Be Administered According to the Seizure Type and Epileptic Syndrome
4
作者 Lun Cai 《Health》 2017年第8期1211-1222,共12页
Traditional Chinese herbal medicine (TCHM) has long been used to treat epilepsy. Although many clinical trials and animal studies have seemingly demonstrated its effect, the question of whether TCHM is efficacious in ... Traditional Chinese herbal medicine (TCHM) has long been used to treat epilepsy. Although many clinical trials and animal studies have seemingly demonstrated its effect, the question of whether TCHM is efficacious in epileptic patients has not been certified because of insufficient supportive evidence. This insufficient supportive evidence stems from the fact that most of the current studies regarding TCHM for epilepsy treatment are not designed according to the different seizure types and epileptic syndromes (STESs). Here, we explore the reasons why many studies have not considered the various STESs and explain how to treat epilepsy according to the pharmacological mechanism for different STESs and exploit the advantage of TCHM for epilepsy treatment. Then, we explain how we treat epilepsy using TCHM according to the different STESs and Bian Zheng Lun Zi. 展开更多
关键词 epilepsy Traditional Chinese HERBAL MEDICINE SEIZURE Type Epileptic SYNDROMES epilepsy classification
下载PDF
基于局部模式的癫痫脑电信号自动分类方法 被引量:2
5
作者 齐永锋 李陇强 《计算机工程》 CAS CSCD 北大核心 2020年第2期298-303,共6页
为有效地检测脑电图(EEG)中的癫痫信号,设计一维局部三值模式(1D-LTP)算子提取信号特征,并结合主成分分析(PCA)和极限学习机(ELM)对特征进行分类。通过1D-LTP算子计算信号点的顶层模式和底层模式下的特征变换码以准确滤除干扰信号,并对... 为有效地检测脑电图(EEG)中的癫痫信号,设计一维局部三值模式(1D-LTP)算子提取信号特征,并结合主成分分析(PCA)和极限学习机(ELM)对特征进行分类。通过1D-LTP算子计算信号点的顶层模式和底层模式下的特征变换码以准确滤除干扰信号,并对变换码直方图PCA降维后采用ELM进行分类,以10折交叉验证评估分类性能。实验结果表明,该方法能有效识别在癫痫发作期的EEG信号,其准确率可达99.79%。 展开更多
关键词 脑电图 局部三值模式算子 特征提取 分类 癫痫
下载PDF
81例顽固性癫痫患者发作分类特点分析 被引量:1
6
作者 赵姝 韩大勇 +2 位作者 张黎明 赵世光 王秀洁 《现代生物医学进展》 CAS 2012年第4期690-692,800,共4页
目的:分析81例最终接受手术治疗的顽固性癫痫患者发病特点,了解不同分类癫痫的发病规律。方法:对81例最终接受手术治疗的顽固性癫痫患者进行分类,分析性别、发病年龄、病程、发作频率等与癫痫分类间的关系。结果:81例患者的男女比例为1.... 目的:分析81例最终接受手术治疗的顽固性癫痫患者发病特点,了解不同分类癫痫的发病规律。方法:对81例最终接受手术治疗的顽固性癫痫患者进行分类,分析性别、发病年龄、病程、发作频率等与癫痫分类间的关系。结果:81例患者的男女比例为1.45:1,男性的平均发病年龄为13.6,女性为14.3,强直阵挛发作的耐受病程最短,平均为5.8年,大多数患者在20岁以前发病。结论:多种癫痫发作分类在性别、发病年龄、病程、发作频率上存在差异。 展开更多
关键词 顽固性癫痫 癫痫分类 发作特点
原文传递
Neuropathology Classifier Based on Higher Order Spectra
7
作者 Cesar Seijas Antonino Caralli Sergio Villazana 《Journal of Computer and Communications》 2013年第4期28-32,共5页
Epilepsy is the most common neuropathology. Statistical studies related to the disease reported that 20% - 25% of epileptic patients with occurrence of seizures were even under treatment with drugs. This article prese... Epilepsy is the most common neuropathology. Statistical studies related to the disease reported that 20% - 25% of epileptic patients with occurrence of seizures were even under treatment with drugs. This article presents a strategy for improved detection of the neuropathology, based on electroencephalogram (EEG), using a classifier built with support vector machines (SVC). The SVC is designed based on feature extraction of higher order spectra of time series derived from the EEG applied to epileptic patients and control patients. As demonstrated in the study presented, the EEG time series are highly nonlinear and non-Gaussian, therefore, exhibit higher order spectra, which are extracted features that improve the accuracy in the performance of SVC. The results of this study suggest the development of highly accurate computational tools for the diagnosis of this dreaded neuropathology. 展开更多
关键词 HIGHER Order SPECTRA classification Support Vector MACHINES EEG epilepsy
下载PDF
脑瘫患儿影像学与临床病情的相关性研究 被引量:8
8
作者 于荣 王秀娟 +4 位作者 孙殿荣 侯梅 王珂 赵建慧 李玉堂 《中华物理医学与康复杂志》 CAS CSCD 北大核心 2013年第3期209-213,共5页
目的探讨脑瘫患儿影像学与临床病情的相关性。方法采用回顾性研究对295例脑瘫患儿进行影像学分类、粗大运动功能分级系统(GMFCS)分级及智力测试,分析不同类型的影像学改变与脑瘫类型、GMFCS分级及伴随障碍问的相关性。结果MRI提示影... 目的探讨脑瘫患儿影像学与临床病情的相关性。方法采用回顾性研究对295例脑瘫患儿进行影像学分类、粗大运动功能分级系统(GMFCS)分级及智力测试,分析不同类型的影像学改变与脑瘫类型、GMFCS分级及伴随障碍问的相关性。结果MRI提示影像学异常者257例(异常率87.1%),正常者38例(正常率12.9%),其中脑发育畸形11例,脑室周围白质软化(PVL)173例,皮质-皮质下损伤17例,基底核区损伤26例,小脑发育不良11例,其它19例。GMFCS分级为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ级的患儿比例分别为26.1%、18.0%、17.3%、18.6%、20.0%。脑发育畸形患儿中,痉挛型双侧瘫占81.8%;PVL患儿中痉挛型双侧瘫占84.4%;皮质.皮质下损伤患儿中痉挛型双侧瘫占47.1%,痉挛型偏瘫占41.2%;基底核区损伤患儿中不随意运动型脑瘫占76.9%;小脑发育不良患儿则全部表现为共济失调型脑瘫。GMFCSⅠ-Ⅱ级者中,痉挛型偏瘫、痉挛型双侧瘫、不随意运动型脑瘫及共济失调型脑瘫的比例分别为81.5%、47.1%、25.0%和30.7%;GMFCSⅣ-V级者中,上述各类型的比例分别为3.7%、33.5%、64.1%和46.2%。GMFCSⅠ-Ⅱ级者中,MRI表现为脑发育畸形、PVL、皮质.皮质下损伤、基底核区损伤及小脑发育不良的患儿比例分别为9.1%、43.9%、58.8%、19.2%和27.3%;GMFCSⅣ-Ⅴ级者中,上述MRI表现的患儿比例分别为45.5%、34.7%、29.4%、73.1%和45.5%。脑发育畸形、皮质-皮质下损伤患儿中癫痫的发生率分别为36.4%和41.2%(P〈0.01);脑发育畸形、皮质.皮质下损伤及小脑发育不良患儿中智力低下的发生率较高,分别为45.5%、41.2%和36.4%(P〈0.01)。GMFCSⅣ-Ⅴ级患儿与GMFCSⅠ-Ⅱ级患儿相比,前者癫痫及智力低下的发生率高于后者(P〈0.05)� 展开更多
关键词 脑瘫 影像学 类型 粗大运动功能分级系统 癫痫 智力低下
原文传递
不同FCD分型所致药物难治性癫痫患者的手术预后影响因素 被引量:5
9
作者 薛亚飞 景芸芸 张玉富 《海南医学》 CAS 2019年第16期2085-2088,共4页
目的研究不同分型局灶性皮质发育不良(FCD)所致的药物难治性癫痫患者行手术治疗后的预后影响因素。方法选取2013年3月至2016年4月期间空军军医大学唐都医院收治的药物难治性癫痫患者87例作为研究对象,患者均经过手术治疗,并且术后病理... 目的研究不同分型局灶性皮质发育不良(FCD)所致的药物难治性癫痫患者行手术治疗后的预后影响因素。方法选取2013年3月至2016年4月期间空军军医大学唐都医院收治的药物难治性癫痫患者87例作为研究对象,患者均经过手术治疗,并且术后病理均证实为FCD,根据患者的病理分型将其分为FCDⅠ型33例、FCDⅡ型28例、FCDⅢ型26例,对所有患者进行随访,采用Engel分级分析患者预后,再根据患者预后情况采用单因素与多因素Logistic回归分析不同患者手术预后的相关影响因素。结果根据随访结果显示,FCDⅠ型患者EngelⅠ级27例(81.82%)、Ⅱ级3例(9.09%)、Ⅲ级2例(6.06%)、Ⅳ级1例(3.03%);Ⅱ型患者EngelⅠ级18例(64.29%)、Ⅱ级3例(10.71%)、Ⅲ级4例(12.29%)、Ⅳ级3例(10.71%);Ⅲ型患者EngelⅠ级8例(30.77%)、Ⅱ级7例(26.92%)、Ⅲ级6例(23.08%)、Ⅳ级5例(19.23%);以上不同FCD分型患者的Engel分级中,除Ⅲ级外,Ⅰ级、Ⅱ级、Ⅳ级比较,差异均有统计学意义(P<0.05);预后良好者53例,不良者34例,根据单因素分析结果显示,临床发作类型、PET-CT表现、病灶部位、切除范围、病理分型是影响患者预后的影响因素(P<0.05);多因素Logistic回归分析结果显示,临床发作类型、切除范围、病理分型是影响患者预后的独立危险因素(P<0.05)。结论不同FCD分型药物难治性癫痫患者手术后影响预后的独立危险因素为临床发作类型、切除范围、病理分型。 展开更多
关键词 病理分型 局灶性皮质发育不良 药物难治性癫痫 手术治疗 预后 影响因素
下载PDF
以Omaha问题分类系统的延伸照护表应用于癫痫患儿的效果
10
作者 高亚丽 钱黛净 孙明霞 《吉林医学》 CAS 2022年第1期260-263,共4页
目的:探讨以Omaha问题分类系统的延伸照护表应用于癫痫患儿的效果。方法:选择2019年10月~2020年10月收治的癫痫患儿110例,随机分为两组,各55例。对照组实施常规干预,观察组实施以Omaha问题分类系统的延伸照护表干预。对比两组出院3个月... 目的:探讨以Omaha问题分类系统的延伸照护表应用于癫痫患儿的效果。方法:选择2019年10月~2020年10月收治的癫痫患儿110例,随机分为两组,各55例。对照组实施常规干预,观察组实施以Omaha问题分类系统的延伸照护表干预。对比两组出院3个月内再入院率、出院前后脑电图正常率、各阶段主要护理问题发生率、照护者负性情绪情况。结果:观察组出院3个月内再入院率低于对照组,差异有统计学意义(P<0.05);观察组出院3个月脑电图正常率高于对照组,差异有统计学意义(P<0.05);观察组出院3个月生理、环境、心理社会、健康行为领域的护理问题发生率均低于对照组,差异有统计学意义(P<0.05);观察组出院3个月照护者SAS、SDS评分均低于对照组,差异有统计学意义(P<0.05)。结论:以Omaha问题分类系统的延伸照护表应用于癫痫患儿可减少再入院率及各阶段主要护理问题发生率,提升脑电图正常率,缓解照护者负性情绪。 展开更多
关键词 Omaha问题分类系统 延伸照护表 癫痫 再入院 脑电图 负性情绪
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部