Background Shensong Yangxin (SSYX) is one of the compound recipe of Chinese materia medica. This study was conducted to investigate the effects of SSYX on sodium current (/Na), L-type calcium current (/Ca.L), tr...Background Shensong Yangxin (SSYX) is one of the compound recipe of Chinese materia medica. This study was conducted to investigate the effects of SSYX on sodium current (/Na), L-type calcium current (/Ca.L), transient outward potassium current (/to), delayed rectifier current (/K), and inward rectifier potassium currents (/K1) in isolated ventricular myocytes. Methods Whole cell patch-clamp technique was used to study ion channel currents in enzymatically isolated guinea pig or rat ventricular myocytes. Results SSYX decreased peak Na by (44.84±7.65)% from 27.21±5.35 to 14.88±2..75 pA/pF (n=-5, P〈0.05). The medicine significantly inhibited the /Ca,L. At concentrations of 0.25, 0.50, and 1.00 g/100 ml, the peak/Ca,L was reduced by (19.22±1.10)%, (44.82±6.50)% and (50.69±5.64)%, respectively (n=5, all P〈0.05). SSYX lifted the I-V curve of both /Na and /Ca,L without changing the threshold, peak and reversal potentials. At the concentration of 0.5%, the drug blocked the transient component of /to by 50.60% at membrane voltage of 60 mV and negatively shifted the inactive curve and delayed the recovery from channel inactivation. The tail current density of /K was decreased by (30.77±1.11)% (n=5, P〈0.05) at membrane voltage of 50 mV after exposure to the medicine and the time-dependent activity of /K was also inhibited. Similar to the effect on /K, the SSYX inhibited /K1 by 33.10% at the test potential of -100 mV with little effect on reversal potential and the rectification property. Conclusions The experiments revealed that SSYX could block multiple ion channels such as /Na /Ca,L, /k, /to and /K1, which may change the action potential duration and contribute to some of its antiarrhythmic effects.展开更多
A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulati...A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.展开更多
Background Diabetes mellitus is associated with coronary dysfunction, contributing to a 2- to 4-fold increase in the risk of coronary heart diseases. The mechanisms by which diabetes induces vasculopathy involve endot...Background Diabetes mellitus is associated with coronary dysfunction, contributing to a 2- to 4-fold increase in the risk of coronary heart diseases. The mechanisms by which diabetes induces vasculopathy involve endothelial-dependent and -independent vascular dysfunction in both type 1 and type 2 diabetes mellitus. The purpose of this study is to determine the role of vascular large conductance Ca2+-activated K+ (BK) channel activities in coronary dysfunction in streptozotocin-induced diabetic rats. Methods Using videomicroscopy, immunoblotting, fluorescent assay and patch clamp techniques, we investigated the coronary BK channel activities and BK channel-mediated coronary vasoreactivity in streptozotocin-induced diabetic rats. Results BK currents (defined as the iberiotoxin-sensitive K+ component) contribute (65+4)% of the total K+currents in freshly isolated coronary smooth muscle cells and 〉50% of the contraction of the inner diameter of coronary arteries from normal rats. However, BK current density is remarkably reduced in coronary smooth muscle cells of streptozotocin-induced diabetic rats, leading to an increase in coronary artery tension. BK channel activity in response to free Ca2+ iS impaired in diabetic rats. Moreover, cytoplasmic application of DHS-1 (a specific BK channel i~ subunit activator) robustly enhanced the open probability of BK channels in coronary smooth muscle cells of normal rats. In diabetic rats, the DHS-1 effect was diminished in the presence of 200 nmol/L Ca2+ and was significantly attenuated in the presence of high free calcium concentration, i.e., 1 μmol/L Ca2+. Immunoblotting experiments confirmed that there was a 2-fold decrease in BK-β1 protein expression in diabetic vessels, without alterinq the BK channel a-subunit expression.Although the cytosolic Ca2+ concentration of coronary arterial smooth muscle cells was increased from (103±23) nmol/L (n=5) of control rats to (193±22) nmol/L (n=6, P 〈0.05) of STZ-induced diabetic展开更多
针对某航空发动机在试车过程中风扇机匣安装边上用于固定管路的多处卡箍发生的断裂故障,通过对卡箍故障件进行断口分析和设计复查等,确定了卡箍断裂发生的原因:在设计状态下,卡箍上、下瓣之间装配夹角较大,在螺栓拧紧过程中,造成卡箍结...针对某航空发动机在试车过程中风扇机匣安装边上用于固定管路的多处卡箍发生的断裂故障,通过对卡箍故障件进行断口分析和设计复查等,确定了卡箍断裂发生的原因:在设计状态下,卡箍上、下瓣之间装配夹角较大,在螺栓拧紧过程中,造成卡箍结构故障位置产生较大的初始局部应力,在较大的振动环境下导致综合应力增大,由于故障位置结构强度储备不足,从而发生高周疲劳断裂。通过对卡箍结构采取加装 2 mm 厚钢垫、降低静应力等改进措施优化设计,降低了其静应力,提高了其强度储备,有效避免此类故障再次发生。展开更多
文摘Background Shensong Yangxin (SSYX) is one of the compound recipe of Chinese materia medica. This study was conducted to investigate the effects of SSYX on sodium current (/Na), L-type calcium current (/Ca.L), transient outward potassium current (/to), delayed rectifier current (/K), and inward rectifier potassium currents (/K1) in isolated ventricular myocytes. Methods Whole cell patch-clamp technique was used to study ion channel currents in enzymatically isolated guinea pig or rat ventricular myocytes. Results SSYX decreased peak Na by (44.84±7.65)% from 27.21±5.35 to 14.88±2..75 pA/pF (n=-5, P〈0.05). The medicine significantly inhibited the /Ca,L. At concentrations of 0.25, 0.50, and 1.00 g/100 ml, the peak/Ca,L was reduced by (19.22±1.10)%, (44.82±6.50)% and (50.69±5.64)%, respectively (n=5, all P〈0.05). SSYX lifted the I-V curve of both /Na and /Ca,L without changing the threshold, peak and reversal potentials. At the concentration of 0.5%, the drug blocked the transient component of /to by 50.60% at membrane voltage of 60 mV and negatively shifted the inactive curve and delayed the recovery from channel inactivation. The tail current density of /K was decreased by (30.77±1.11)% (n=5, P〈0.05) at membrane voltage of 50 mV after exposure to the medicine and the time-dependent activity of /K was also inhibited. Similar to the effect on /K, the SSYX inhibited /K1 by 33.10% at the test potential of -100 mV with little effect on reversal potential and the rectification property. Conclusions The experiments revealed that SSYX could block multiple ion channels such as /Na /Ca,L, /k, /to and /K1, which may change the action potential duration and contribute to some of its antiarrhythmic effects.
基金National Natura1 Science Foundation of China (No. 39870372),StateKey Basic Research and Development Project (No.G1999011700)
文摘A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA- inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPl), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.
基金the National Natural Science Foundation of China,Natural Science Foundation of Jiangsu Province,Medical Key Personnel of Jiangsu Province,Top Qualified Personnel in Six Fields of Jiangsu Province (006) to WANG Ru-xing and the American Diabetes Association Junior Faculty Awards
文摘Background Diabetes mellitus is associated with coronary dysfunction, contributing to a 2- to 4-fold increase in the risk of coronary heart diseases. The mechanisms by which diabetes induces vasculopathy involve endothelial-dependent and -independent vascular dysfunction in both type 1 and type 2 diabetes mellitus. The purpose of this study is to determine the role of vascular large conductance Ca2+-activated K+ (BK) channel activities in coronary dysfunction in streptozotocin-induced diabetic rats. Methods Using videomicroscopy, immunoblotting, fluorescent assay and patch clamp techniques, we investigated the coronary BK channel activities and BK channel-mediated coronary vasoreactivity in streptozotocin-induced diabetic rats. Results BK currents (defined as the iberiotoxin-sensitive K+ component) contribute (65+4)% of the total K+currents in freshly isolated coronary smooth muscle cells and 〉50% of the contraction of the inner diameter of coronary arteries from normal rats. However, BK current density is remarkably reduced in coronary smooth muscle cells of streptozotocin-induced diabetic rats, leading to an increase in coronary artery tension. BK channel activity in response to free Ca2+ iS impaired in diabetic rats. Moreover, cytoplasmic application of DHS-1 (a specific BK channel i~ subunit activator) robustly enhanced the open probability of BK channels in coronary smooth muscle cells of normal rats. In diabetic rats, the DHS-1 effect was diminished in the presence of 200 nmol/L Ca2+ and was significantly attenuated in the presence of high free calcium concentration, i.e., 1 μmol/L Ca2+. Immunoblotting experiments confirmed that there was a 2-fold decrease in BK-β1 protein expression in diabetic vessels, without alterinq the BK channel a-subunit expression.Although the cytosolic Ca2+ concentration of coronary arterial smooth muscle cells was increased from (103±23) nmol/L (n=5) of control rats to (193±22) nmol/L (n=6, P 〈0.05) of STZ-induced diabetic
文摘针对某航空发动机在试车过程中风扇机匣安装边上用于固定管路的多处卡箍发生的断裂故障,通过对卡箍故障件进行断口分析和设计复查等,确定了卡箍断裂发生的原因:在设计状态下,卡箍上、下瓣之间装配夹角较大,在螺栓拧紧过程中,造成卡箍结构故障位置产生较大的初始局部应力,在较大的振动环境下导致综合应力增大,由于故障位置结构强度储备不足,从而发生高周疲劳断裂。通过对卡箍结构采取加装 2 mm 厚钢垫、降低静应力等改进措施优化设计,降低了其静应力,提高了其强度储备,有效避免此类故障再次发生。