Ni-Zn ferrite with a nominal composition of Ni1–XZnXFe2O4 (X = 0, 0.2, 0.6, 0.8, 0.9 & 1.0) ferrite powders have been successfully prepared at a very low temperature (180℃) by a novel auto combustion process usi...Ni-Zn ferrite with a nominal composition of Ni1–XZnXFe2O4 (X = 0, 0.2, 0.6, 0.8, 0.9 & 1.0) ferrite powders have been successfully prepared at a very low temperature (180℃) by a novel auto combustion process using citric acid as a coordinating agent. Phase purity of the solid solutions has been confirmed by X-ray diffraction. Morphological, elemental composition characterizations of the prepared samples were performed by high resolution scanning electron microscopy and energy dispersive spectroscopy (EDS). Magnetic properties of all samples are obtained by using VSM (Vibrating Sample Magnetometer) in the range of 10 K oe. The saturation magnetization values of the samples are carried out from the B-H loop. The effect of composition on saturation magnetization and magnetic moment are studied in this paper. The results showed that Saturation magnetization and magnetic moment values increases gradually as Zn2+ composition increases, it reaches maximum value 70.28 emu/gm for (X = 0.6) and decreases further with increasing Zn2+ composition.展开更多
文摘Ni-Zn ferrite with a nominal composition of Ni1–XZnXFe2O4 (X = 0, 0.2, 0.6, 0.8, 0.9 & 1.0) ferrite powders have been successfully prepared at a very low temperature (180℃) by a novel auto combustion process using citric acid as a coordinating agent. Phase purity of the solid solutions has been confirmed by X-ray diffraction. Morphological, elemental composition characterizations of the prepared samples were performed by high resolution scanning electron microscopy and energy dispersive spectroscopy (EDS). Magnetic properties of all samples are obtained by using VSM (Vibrating Sample Magnetometer) in the range of 10 K oe. The saturation magnetization values of the samples are carried out from the B-H loop. The effect of composition on saturation magnetization and magnetic moment are studied in this paper. The results showed that Saturation magnetization and magnetic moment values increases gradually as Zn2+ composition increases, it reaches maximum value 70.28 emu/gm for (X = 0.6) and decreases further with increasing Zn2+ composition.