As reported in our prior work, we have recovered microdiamonds and other unusual minerals, including pseudomorph stishovite, moissanite, qingsongite, native elements, metallic alloys, and some crustal minerals (i.e., ...As reported in our prior work, we have recovered microdiamonds and other unusual minerals, including pseudomorph stishovite, moissanite, qingsongite, native elements, metallic alloys, and some crustal minerals (i.e., zircon, quartz, amphibole, and rutile) from ophiolitic peridotites and chromitites. These ophiolite-hosted microdiamonds display different features than kimberlitic, metamorphic, and meteoritic diamonds in terms of isotopic values and mineral inclusions. The characteristic of their light carbon isotopic composition implies that the material source of ophiolite-hosted diamonds is surface-derived organic matter. Coesite inclusions coexisting with kyanite rimming an FeTi alloy from the Luobusa ophiolite show a polycrystalline nature and a prismatic habit, indicating their origin as a replacement of stishovite. The occurrence in kyanite and coesite with inclusions of qingsongite, a cubic boron nitride mineral, and a high-pressure polymorph of rutile (TiO2 II) point to formation pressures of 10–15 GPa at temperatures^1300℃, consistent with depths greater than 380 km, near the mantle transition zone (MTZ). Minerals such as moissanite, native elements, and metallic alloys in chromite grains indicate a highly reduced environment for ophiolitic peridotites and chromitites. Widespread occurrence of diamonds in ophiolitic peridotites and chromitites suggests that the oceanic mantle may be a more significant carbon reservoir than previously thought. These ophiolite-hosted diamonds have proved that surface carbon can be subducted into the deep mantle, and have provided us with a new window for probing deep carbon cycling.展开更多
Diamond, moissanite and a variety of other minerals, similar to those reported from ophiolites in Tibet and northern Russia, have recently been discovered in chromitites of the Hegenshan ophiolite of the Central Asian...Diamond, moissanite and a variety of other minerals, similar to those reported from ophiolites in Tibet and northern Russia, have recently been discovered in chromitites of the Hegenshan ophiolite of the Central Asian Orogenic Belt, north China. The chromitites are small, podiform and vein-like bodies hosted in dunite, clinopyroxene-bearing peridotite, troctolite and gabbro. All of the analysed chromite grains are relatively Al-rich, with Cr^# [100Cr/(Cr+Al)] of about 47-53. Preliminary studies of mainly disseminated chromitite from ore body No. 3756 have identified more than 30 mineral species in addition to diamond and moissanite. These include oxides (mostly hematite, magnetite, ruffle, anatase, cassiterite, and quartz), sulfides (pyrite, marcasite and others), silicates (magnesian olivine, enstatite, augite, diopside, uvarovite, pyrope, orthoclase, zircon, sphene, vesuvianite, chlorite and serpentine) and others (e.g., calcite, monazite, glauberite, iowaite and a range of metallic alloys). This study demonstrates that diamond, moissanite and other exotic minerals can occur in high-Al, as well as high-Cr chromites, and significantly extends the geographic and age range of known diamond-bearing ophiolites.展开更多
The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation,but the maximum depth is still an open issue.Here,we have investigated the structural stability of natural magne...The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation,but the maximum depth is still an open issue.Here,we have investigated the structural stability of natural magnesiochromite using the synchrotron-based powder X-ray diffraction and diamond anvil cells up to 48.6 GPa and 2450 K.The results have shown that spinel-type magnesiochromite first decomposes into corundum-type‘Cr_(2)O_(3)’+B1-type‘MgO’at 11–14 GPa and 1250–1450 K,then modified ludwigite(mLd)-type‘Mg_(2)Cr_(2)O_(5)’+corundum-type‘Cr_(2)O_(3)’at 14.3–20.5 GPa and 1300–2000 K,and finally CaTi_(2)O_(4)-type phase at 24.5 GPa.During the quenching procession from high-temperature-pressure conditions,the mLd-type phase appeared again and was kept at ambient conditions.We also obtained the isothermal equation states of spinel-type and CaTi_(2)O_(4)-type phases,revealing the composition effect on their elasticities.Based on the updated results,we propose chromitites could not experience pressure exceeding∼14.3 GPa(approximate maximum depth∼400 km)in the subduction-recycling genesis model.展开更多
The Cuobuzha high-Cr chromitites in the western segment of Yarlung Zangbo Suture Zone of Tibet are mainly hosted in the harzburgites as massive type, which are characterized by high concentrations of platinum group el...The Cuobuzha high-Cr chromitites in the western segment of Yarlung Zangbo Suture Zone of Tibet are mainly hosted in the harzburgites as massive type, which are characterized by high concentrations of platinum group elements(PGE) ranging from 380 to 577 ppb, and low Pd/Ir ratios(<0.1). In mid-ocean ridge basalts(MORB)-normalized spidergrams, chromites of the Cuobuzha chromitites are depleted in Al, Ga, V, Mg and Zn, and enriched in Mn and Cr, sharing similar patterns with those of ophiolitic boninites in the Bonin and Thetford Mines. Approximately 20 platinum group mineral(PGM) grains were discovered from the samples, including laurite, erlichmanite, Os-Fe alloy, cuproiridsite, and irarsite. The PGM assemblages indicate that sulfur fugacity was initially low enough to allow the precipitation of Os-Fe alloy and increased thereafter, with the fall in temperature. Primary Fe-Ni and Fe-Cr alloys, which are stable in a highly reduced environment, occur as inclusions within chromites or clinopyroxenes. Calculated results show that the parental magma has an intimate affinity with boninites. Based on our observations, a model is proposed wherein the Cuobuzha chromitites contain high-pressure and low-pressure chromites. Low-pressure chromites were formed via reaction between boninitic melts and peridotites, during which the high-pressure chromites hosting highly reduced minerals were mobilized by melts and were reallocated to podiform chromitites.展开更多
The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Saya...The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan(SEPES ophiolites).Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites.The chromitites are classified into type I and type Ⅱ based on their Cr~#.Type I(Cr~# = 59-85) occurs in both northern and southern branches,whereas type Ⅱ(Cr~# = 76-90) occurs only in the northern branch.PGE contents range from ∑PGE 88-1189 ppb,Pt/Ir0.04-0.42 to ∑PGE 250-1700 ppb,Pt/Ir 0.03-0.25 for type I chromitites of the northern and southern branches respectively.The type Ⅱ chromitites of the northern branch have ∑PGE contents higher than that of type Ⅰ(468-8617 ppb,Pt/Ir 0.1-0.33).Parental melt compositions,in equilibrium with podiform chromitites,are in the range of boninitic melts and vary in Al_2O_3,TiO_2 and FeO/MgO contents from those of type I and type Ⅱ chromitites.Calculated melt compositions for type Ⅰ chromitites are(Al_2O_3)_(melt) = 10.6—13.5 wt.%,(TiO_2)_(melt) = 0.01-0.44 wt.%,(Fe/Mg)_(melt) = 0.42-1.81;those for type Ⅱ chromitites are:(Al_2O_3)_(melt) = 7.8-10.5 wt.%,(TiO_2)_(melt) = 0.01-0.25 wt.%,(Fe/Mg)_(melt) = 0.5-2.4.Chromitites are further divided into Os-Ir-Ru(Ⅰ) and Pt-Pd(Ⅱ) based on their PGE patterns.The type Ⅰ chromitites show only the Os-Ir-Ru pattern whereas type Ⅱ shows both Os-Ir-Ru and Pt-Pd patterns.PGE mineralization in type Ⅰ chromitites is represented by the Os-Ir-Ru system,whereas in type Ⅱ it is represented by the Os-Ir-Ru-Rh-Pt system.These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction.However,the chromitites and PGE mineralization of the southern branch could have for展开更多
The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous(99...The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous(99 Ma) to Neoarchean(2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction(SSZ)-type Mayari-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains(n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negativeε_(Hf)(t)(-26 to-0.6) and occasional inclusions of quartz, K-feldspar,biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains(297±5 Ma to 2126±27 Ma) show positive εHf(t)(+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile(mantle)sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite.We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.展开更多
The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and plati...The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and platinum-group elements geochemistry of the Hongshishan chromitites for the purpose of constraining the origin,evolution and composition of their parental melts.The restricted ranges of Al_(2)O_(3),Cr_(2)O_(3)and Cr#-Mg#variation of chromite-cores and chromites fall within the field of the mid-ocean ridge and ophiolitic podiform chromite settings.The(^(187)Os/^(188)Os)i ratios of the chromitites are in the range of 0.12449–0.12745(average 0.12637)and theγOs are from-1.92 to-0.06(average-0.83).In the Re-Os isotope diagrams,all the samples fall in the field of chromitites and show a residual peridotitic trend.The range of Os isotopic compositions andγOs values indicate that they overlap the depleted MORB mantle(DMM)as well as being close to global Os isotopic data andγOs of ophiolite chromitites.The characteristics of the PGE contents can be roughly subdivided into two groups:podiform chromitites and Ural-Alaskan type complexes.For the ferritchromite cores,the calculated Al_(2)O_(3)concentrations of the parental melt are higher(average 16.65 wt%)in high-Cr than high-Al chromitite(average 16.17 wt%)and for the chromite,the calculated Al_(2)O_(3)concentrations are even higher(average 16.48 wt%)in the high-Cr than the high-Al examples(average 15.38 wt%).In the(TiO_(2))melt vs.TiO_(2)diagrams,most high-Al melts fall in the MORB,while the high-Cr melts fall in the ARC field.The calculated Fe O/Mg O ratios for the parental melt show the closest resemblance to a MORB magma composition.The inferred parental melt composition for studied chromitites falls in the field of mid-ocean ridge basalt(MORB)magmas and far away from boninite.The calculated degrees of partial melting producing the chromitites are 16%-22%(average 19%),which is around the range of those of the MORB magmas.The chromitites are suggested to hav展开更多
Ophiolites components occur in Pan-African belt in Central Eastern Desert(CED)and South Eastern Desert(SED.The ultramafic components are severely serpentinized and in some areas occur as small fresh
The Precambrian podiform chromitites associated with ophiolites are abundant in Pan-African belt in central Eastern Desert(CED)and south Eastern Desert(SED),Egypt and range from 690 to 890 Ma in age.The studied chromi...The Precambrian podiform chromitites associated with ophiolites are abundant in Pan-African belt in central Eastern Desert(CED)and south Eastern Desert(SED),Egypt and range from 690 to 890 Ma in age.The studied chromitites associated with Neoproterozoic ophiolites are distributed in southern Eastern Desert,Egypt in Baranis-Shalaten sheet and occur as lenticular bodies with variable dimensions in ultramafic component(serpentinites).We present geochemical and mineralogical data from three areas of ophiolites and associated chromitites namely Gebel Abu Dahr(D),Gebel Arais(A)and Gebel Anbat in the Wadi Hodein area(H)(Fig.1).The paper studies the compositional variations and tectonic settings of podiform chromitites associated with ultramafic rocks,in addition to the alteration process of chromite during metamorphism.The ophiolite in the present areas is composed of the ultramafic rocks(mainly serpentinites)with minor relics of fresh dunite and harzburgite.All these rocks are affected by metamorphism and subsequent retrograde during subduction and exhumation.Six samples selected from the serpentinites geochemically analyzed for major,trace and some REE elements and the geochemical results reflect that harzburgite and dunite compositions are typical of depleted mantle peridotite.Microprobe analyses and SIMS investigations were carried out for three massive podiform chromitite ore bodies and disseminated chromites in serpentinites(1215 spot probe analyses),and silicate minerals in serpentinite rocks such as serpentine and olivine(102 spots).Serpentine minerals are mainly antigorite with some chrysotile in serpentinite rocks and in chromitites,mainly filling cross-cutting veins.In this study,we consider that the alteration occurred in two stages:during the first one chromite reacted with olivine and water to form Cr-and Fe-rich,porous chromite and chlorite;during the second event magnetite filled the pores,created in the porous chromite and defused into this chromite to form homogeneous magnetite.According to this,the co展开更多
A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the ...A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the Kangjinla (康金拉) district at the eastern end of the ophiolite, has revealed many of the same minerals, including diamond, moissanite, and some native elements, alloys, oxides, sulphides, silicates, carbonates, and tungstates. This orebody is particularly rich in diamonds, with over 1 000 grains recovered from about 1 100 kg sample of chromitite. More detailed studies and experiments are needed to understand the origin and significance of these unusual minerals because they have not been found in situ. It is a great breakthrough in mineralogical research that we have picked up more than 40 kinds of minerals from the Kangjinla chromite deposit in Luobusa. It is notable that a large amount of diamonds were firstly discovered from the Kangjinla chromite deposit as well as many other unusual minerals, such as moissanites, rutiles, native irons, and metal alloys. Especially, that diamond was found again in different chromitites in the same ophiolite belt provided new key evidence for discussing the origin of the diamond and the hosted chromitite and ophiolite. The mantle mineral group in Tibet has great significance in mineralogy and geodynamics.展开更多
基金the National Natural Science Foundation of China (41720104009 and 41802034)Natural Science Foundation of Jiangsu province, China (BK20180349).
文摘As reported in our prior work, we have recovered microdiamonds and other unusual minerals, including pseudomorph stishovite, moissanite, qingsongite, native elements, metallic alloys, and some crustal minerals (i.e., zircon, quartz, amphibole, and rutile) from ophiolitic peridotites and chromitites. These ophiolite-hosted microdiamonds display different features than kimberlitic, metamorphic, and meteoritic diamonds in terms of isotopic values and mineral inclusions. The characteristic of their light carbon isotopic composition implies that the material source of ophiolite-hosted diamonds is surface-derived organic matter. Coesite inclusions coexisting with kyanite rimming an FeTi alloy from the Luobusa ophiolite show a polycrystalline nature and a prismatic habit, indicating their origin as a replacement of stishovite. The occurrence in kyanite and coesite with inclusions of qingsongite, a cubic boron nitride mineral, and a high-pressure polymorph of rutile (TiO2 II) point to formation pressures of 10–15 GPa at temperatures^1300℃, consistent with depths greater than 380 km, near the mantle transition zone (MTZ). Minerals such as moissanite, native elements, and metallic alloys in chromite grains indicate a highly reduced environment for ophiolitic peridotites and chromitites. Widespread occurrence of diamonds in ophiolitic peridotites and chromitites suggests that the oceanic mantle may be a more significant carbon reservoir than previously thought. These ophiolite-hosted diamonds have proved that surface carbon can be subducted into the deep mantle, and have provided us with a new window for probing deep carbon cycling.
基金funded by grants from the National Natural Science Foundation of China (No.40930313)the China Geological Survey (No.12120114057701,No.12120114061801 and No.12120114061501)
文摘Diamond, moissanite and a variety of other minerals, similar to those reported from ophiolites in Tibet and northern Russia, have recently been discovered in chromitites of the Hegenshan ophiolite of the Central Asian Orogenic Belt, north China. The chromitites are small, podiform and vein-like bodies hosted in dunite, clinopyroxene-bearing peridotite, troctolite and gabbro. All of the analysed chromite grains are relatively Al-rich, with Cr^# [100Cr/(Cr+Al)] of about 47-53. Preliminary studies of mainly disseminated chromitite from ore body No. 3756 have identified more than 30 mineral species in addition to diamond and moissanite. These include oxides (mostly hematite, magnetite, ruffle, anatase, cassiterite, and quartz), sulfides (pyrite, marcasite and others), silicates (magnesian olivine, enstatite, augite, diopside, uvarovite, pyrope, orthoclase, zircon, sphene, vesuvianite, chlorite and serpentine) and others (e.g., calcite, monazite, glauberite, iowaite and a range of metallic alloys). This study demonstrates that diamond, moissanite and other exotic minerals can occur in high-Al, as well as high-Cr chromites, and significantly extends the geographic and age range of known diamond-bearing ophiolites.
基金supported by the National Science Foundation of China(No.41827802)performed at GeoSoilEnviroCARS(Sector 13-ID-D)+3 种基金Advanced Photon Source(APS),Argonne National Laboratory(ANL)supported by the National Science Foundation-Earth Sciences(No.EAR-1634415)the Department of Energy,Geosciences(No.DE-FG02-94ER14466)APS is supported by DOE-BES(No.DE-AC02-06CH11357).
文摘The podiform chromitites in the Luobusha ophiolite have been thought to experience a very deep formation,but the maximum depth is still an open issue.Here,we have investigated the structural stability of natural magnesiochromite using the synchrotron-based powder X-ray diffraction and diamond anvil cells up to 48.6 GPa and 2450 K.The results have shown that spinel-type magnesiochromite first decomposes into corundum-type‘Cr_(2)O_(3)’+B1-type‘MgO’at 11–14 GPa and 1250–1450 K,then modified ludwigite(mLd)-type‘Mg_(2)Cr_(2)O_(5)’+corundum-type‘Cr_(2)O_(3)’at 14.3–20.5 GPa and 1300–2000 K,and finally CaTi_(2)O_(4)-type phase at 24.5 GPa.During the quenching procession from high-temperature-pressure conditions,the mLd-type phase appeared again and was kept at ambient conditions.We also obtained the isothermal equation states of spinel-type and CaTi_(2)O_(4)-type phases,revealing the composition effect on their elasticities.Based on the updated results,we propose chromitites could not experience pressure exceeding∼14.3 GPa(approximate maximum depth∼400 km)in the subduction-recycling genesis model.
基金funded by grants from the Ministry of Science and Technology of China (2014DFR21270)from the China Geological Survey (DD20160023-01 and DD20160022-01)+1 种基金from the National Natural Science Foundation of China (41802034)from the National Science Foundation of China (41720104009, 41672063, 41773029).
文摘The Cuobuzha high-Cr chromitites in the western segment of Yarlung Zangbo Suture Zone of Tibet are mainly hosted in the harzburgites as massive type, which are characterized by high concentrations of platinum group elements(PGE) ranging from 380 to 577 ppb, and low Pd/Ir ratios(<0.1). In mid-ocean ridge basalts(MORB)-normalized spidergrams, chromites of the Cuobuzha chromitites are depleted in Al, Ga, V, Mg and Zn, and enriched in Mn and Cr, sharing similar patterns with those of ophiolitic boninites in the Bonin and Thetford Mines. Approximately 20 platinum group mineral(PGM) grains were discovered from the samples, including laurite, erlichmanite, Os-Fe alloy, cuproiridsite, and irarsite. The PGM assemblages indicate that sulfur fugacity was initially low enough to allow the precipitation of Os-Fe alloy and increased thereafter, with the fall in temperature. Primary Fe-Ni and Fe-Cr alloys, which are stable in a highly reduced environment, occur as inclusions within chromites or clinopyroxenes. Calculated results show that the parental magma has an intimate affinity with boninites. Based on our observations, a model is proposed wherein the Cuobuzha chromitites contain high-pressure and low-pressure chromites. Low-pressure chromites were formed via reaction between boninitic melts and peridotites, during which the high-pressure chromites hosting highly reduced minerals were mobilized by melts and were reallocated to podiform chromitites.
基金supported by RFBR grant Nos.16-05-00737 A,1605-00860 A,and 15-05-06950 Ascientific school-7201.2012.5, project SB RAS No.89
文摘The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan(SEPES ophiolites).Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites.The chromitites are classified into type I and type Ⅱ based on their Cr~#.Type I(Cr~# = 59-85) occurs in both northern and southern branches,whereas type Ⅱ(Cr~# = 76-90) occurs only in the northern branch.PGE contents range from ∑PGE 88-1189 ppb,Pt/Ir0.04-0.42 to ∑PGE 250-1700 ppb,Pt/Ir 0.03-0.25 for type I chromitites of the northern and southern branches respectively.The type Ⅱ chromitites of the northern branch have ∑PGE contents higher than that of type Ⅰ(468-8617 ppb,Pt/Ir 0.1-0.33).Parental melt compositions,in equilibrium with podiform chromitites,are in the range of boninitic melts and vary in Al_2O_3,TiO_2 and FeO/MgO contents from those of type I and type Ⅱ chromitites.Calculated melt compositions for type Ⅰ chromitites are(Al_2O_3)_(melt) = 10.6—13.5 wt.%,(TiO_2)_(melt) = 0.01-0.44 wt.%,(Fe/Mg)_(melt) = 0.42-1.81;those for type Ⅱ chromitites are:(Al_2O_3)_(melt) = 7.8-10.5 wt.%,(TiO_2)_(melt) = 0.01-0.25 wt.%,(Fe/Mg)_(melt) = 0.5-2.4.Chromitites are further divided into Os-Ir-Ru(Ⅰ) and Pt-Pd(Ⅱ) based on their PGE patterns.The type Ⅰ chromitites show only the Os-Ir-Ru pattern whereas type Ⅱ shows both Os-Ir-Ru and Pt-Pd patterns.PGE mineralization in type Ⅰ chromitites is represented by the Os-Ir-Ru system,whereas in type Ⅱ it is represented by the Os-Ir-Ru-Rh-Pt system.These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction.However,the chromitites and PGE mineralization of the southern branch could have for
基金financially supported by FEDER Funds,the Spanish Project CGL2015-65824 granted by the Spanish“Ministerio de Economía y Competitividad”to JAPthe Ramón y Cajal Fellowship RYC-2015-17596 to JMGJ
文摘The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous(99 Ma) to Neoarchean(2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction(SSZ)-type Mayari-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains(n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negativeε_(Hf)(t)(-26 to-0.6) and occasional inclusions of quartz, K-feldspar,biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains(297±5 Ma to 2126±27 Ma) show positive εHf(t)(+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile(mantle)sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite.We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.
基金funded by the Chinese Geological Survey(Grant Nos.DD20190071,DD20190812)。
文摘The Hongshishan chromitite deposits are situated to the north of the Beishan orogenic collage,in the southern part of the Central Asian Orogenic Belt.This study describes the mineral chemistry,Re-Os isotopes and platinum-group elements geochemistry of the Hongshishan chromitites for the purpose of constraining the origin,evolution and composition of their parental melts.The restricted ranges of Al_(2)O_(3),Cr_(2)O_(3)and Cr#-Mg#variation of chromite-cores and chromites fall within the field of the mid-ocean ridge and ophiolitic podiform chromite settings.The(^(187)Os/^(188)Os)i ratios of the chromitites are in the range of 0.12449–0.12745(average 0.12637)and theγOs are from-1.92 to-0.06(average-0.83).In the Re-Os isotope diagrams,all the samples fall in the field of chromitites and show a residual peridotitic trend.The range of Os isotopic compositions andγOs values indicate that they overlap the depleted MORB mantle(DMM)as well as being close to global Os isotopic data andγOs of ophiolite chromitites.The characteristics of the PGE contents can be roughly subdivided into two groups:podiform chromitites and Ural-Alaskan type complexes.For the ferritchromite cores,the calculated Al_(2)O_(3)concentrations of the parental melt are higher(average 16.65 wt%)in high-Cr than high-Al chromitite(average 16.17 wt%)and for the chromite,the calculated Al_(2)O_(3)concentrations are even higher(average 16.48 wt%)in the high-Cr than the high-Al examples(average 15.38 wt%).In the(TiO_(2))melt vs.TiO_(2)diagrams,most high-Al melts fall in the MORB,while the high-Cr melts fall in the ARC field.The calculated Fe O/Mg O ratios for the parental melt show the closest resemblance to a MORB magma composition.The inferred parental melt composition for studied chromitites falls in the field of mid-ocean ridge basalt(MORB)magmas and far away from boninite.The calculated degrees of partial melting producing the chromitites are 16%-22%(average 19%),which is around the range of those of the MORB magmas.The chromitites are suggested to hav
文摘Ophiolites components occur in Pan-African belt in Central Eastern Desert(CED)and South Eastern Desert(SED.The ultramafic components are severely serpentinized and in some areas occur as small fresh
文摘The Precambrian podiform chromitites associated with ophiolites are abundant in Pan-African belt in central Eastern Desert(CED)and south Eastern Desert(SED),Egypt and range from 690 to 890 Ma in age.The studied chromitites associated with Neoproterozoic ophiolites are distributed in southern Eastern Desert,Egypt in Baranis-Shalaten sheet and occur as lenticular bodies with variable dimensions in ultramafic component(serpentinites).We present geochemical and mineralogical data from three areas of ophiolites and associated chromitites namely Gebel Abu Dahr(D),Gebel Arais(A)and Gebel Anbat in the Wadi Hodein area(H)(Fig.1).The paper studies the compositional variations and tectonic settings of podiform chromitites associated with ultramafic rocks,in addition to the alteration process of chromite during metamorphism.The ophiolite in the present areas is composed of the ultramafic rocks(mainly serpentinites)with minor relics of fresh dunite and harzburgite.All these rocks are affected by metamorphism and subsequent retrograde during subduction and exhumation.Six samples selected from the serpentinites geochemically analyzed for major,trace and some REE elements and the geochemical results reflect that harzburgite and dunite compositions are typical of depleted mantle peridotite.Microprobe analyses and SIMS investigations were carried out for three massive podiform chromitite ore bodies and disseminated chromites in serpentinites(1215 spot probe analyses),and silicate minerals in serpentinite rocks such as serpentine and olivine(102 spots).Serpentine minerals are mainly antigorite with some chrysotile in serpentinite rocks and in chromitites,mainly filling cross-cutting veins.In this study,we consider that the alteration occurred in two stages:during the first one chromite reacted with olivine and water to form Cr-and Fe-rich,porous chromite and chlorite;during the second event magnetite filled the pores,created in the porous chromite and defused into this chromite to form homogeneous magnetite.According to this,the co
基金supported by China Geological Survey (Nos. 1212010610107 and 1212010610105)the National Natural Science Foundation of China (No. 40610098)
文摘A wide variety of unusual mantle has been reported from podiform chromitite orebodies Cr-31 and Cr-74 in the Luobusa (罗布莎) ophiolite, Tibet. A detailed investigation of chromitite ore- body Cr-ll, located in the Kangjinla (康金拉) district at the eastern end of the ophiolite, has revealed many of the same minerals, including diamond, moissanite, and some native elements, alloys, oxides, sulphides, silicates, carbonates, and tungstates. This orebody is particularly rich in diamonds, with over 1 000 grains recovered from about 1 100 kg sample of chromitite. More detailed studies and experiments are needed to understand the origin and significance of these unusual minerals because they have not been found in situ. It is a great breakthrough in mineralogical research that we have picked up more than 40 kinds of minerals from the Kangjinla chromite deposit in Luobusa. It is notable that a large amount of diamonds were firstly discovered from the Kangjinla chromite deposit as well as many other unusual minerals, such as moissanites, rutiles, native irons, and metal alloys. Especially, that diamond was found again in different chromitites in the same ophiolite belt provided new key evidence for discussing the origin of the diamond and the hosted chromitite and ophiolite. The mantle mineral group in Tibet has great significance in mineralogy and geodynamics.