CHRIS(Compact High Resolution Imaging Spectrometer)是欧空局于2001年10月发射的PROBA-1卫星上搭载的探索性高光谱遥感器,它具备高空间分辨率、多角度观测、高光谱成像等特点,为水质遥感监测提供不可多得的数据源。基于卫星遥感图像...CHRIS(Compact High Resolution Imaging Spectrometer)是欧空局于2001年10月发射的PROBA-1卫星上搭载的探索性高光谱遥感器,它具备高空间分辨率、多角度观测、高光谱成像等特点,为水质遥感监测提供不可多得的数据源。基于卫星遥感图像定量监测水质,一个关键步骤就是进行精确的大气校正,提取水面反射率。相比陆地遥感图像,水面反射率是弱信号,对大气校正的要求更高。6S(Second Simulation of SatelliteSignal in the Solar Spectrum)和MODTRAN(MOderate resolution TRANsmittance code)是两种常用的大气辐射传输模型。本文选取基于6S的REMS(Remote Sensing Environmental Monitoring System)和基于MODT-RAN的ACORN(Atmospheric CORrection Now)两种大气校正软件,对太湖梅梁湾的三景不同成像角度CHRIS图像进行大气校正,将大气校正后的图像水体反射率与地面同步实测水体反射率进行比较分析。结果表明,经过大气校正的CHRIS图像得到的水面反射率与实测反射率波形十分地接近,在全部波长范围内的相关系数达到90%。分析实测的水体反射率角度特征,发现图像的角度特征更明显。三个观测角度下反射率之间的各差值都呈现出在绿光波段较大,在红光和近红外波段偏小的特点,这和实测结果相符。ACORN校正后的图像的角度特征更好地与实测结果吻合。展开更多
Four heavyweight guests in the field of public health gathered together.No-bel Laureate Jules A Hoffmann,Academician George Fu Gao,Professor Chris Walzer and Professor Jiahai Lu discussed how to deal with global publi...Four heavyweight guests in the field of public health gathered together.No-bel Laureate Jules A Hoffmann,Academician George Fu Gao,Professor Chris Walzer and Professor Jiahai Lu discussed how to deal with global public health crises,such as the recent coronavirus disease 2019(COVID-19)pandemic,as well as the role of international organizations.The concept of“One Health”emerged as the latest approach to disease prevention and control.This concept emphasizes the intertwined health of humans,animals and the environment.The experts shared their thoughts and insights on how humanity can address emerging global public health crises through international cooperation.展开更多
The CHRIS (Compact High Resolution Imaging Spectrometer) is a new imaging spectrometer, carried on board a new space platform called PROBA (Project for On Board Autonomy). The satellite was successfully launched in Oc...The CHRIS (Compact High Resolution Imaging Spectrometer) is a new imaging spectrometer, carried on board a new space platform called PROBA (Project for On Board Autonomy). The satellite was successfully launched in October 2001 by the European Space Agency (ESA). CHRIS operates over the visible/near infrared band (400-1050 nm). It has five work modes and can reach a maximum of 62 spectral bands. In this research, atmospheric correction based on hyperspectral images was performed on CHRIS images by using the popular radiance transfer code ACORN (Atmospheric Correction Now) and empirical algorithms. ACORN was also used to evaluate the calibration performance of CHRIS by the retrieved spectra of typical vegetation and soil. As a result,the maize reflectance spectrum corrected by ACORN could characterize vegetation reflectance in the range of 498-750 nm, but gave a fairly large deviation beyond 750 nm,showing the deficiency of spectral calibration beyond 750 nm. The ACORN-derived soil reflectance decreased beyond 800 nm, which was quite inconsistent with field-spectrummeasurement and showed that the calibration accuracy couldn't meet the requirements of ACORN for spectral and radiometric calibration within a certain spectral range. In addition,the stripes on the retrieved water-vapor content map indicated that the radiance-calibration performance of CHRIS is not perfect. As the first spaceborne hyperspectral imager of ESA, the calibration performance of CHRIS needs to be improved.展开更多
文摘CHRIS(Compact High Resolution Imaging Spectrometer)是欧空局于2001年10月发射的PROBA-1卫星上搭载的探索性高光谱遥感器,它具备高空间分辨率、多角度观测、高光谱成像等特点,为水质遥感监测提供不可多得的数据源。基于卫星遥感图像定量监测水质,一个关键步骤就是进行精确的大气校正,提取水面反射率。相比陆地遥感图像,水面反射率是弱信号,对大气校正的要求更高。6S(Second Simulation of SatelliteSignal in the Solar Spectrum)和MODTRAN(MOderate resolution TRANsmittance code)是两种常用的大气辐射传输模型。本文选取基于6S的REMS(Remote Sensing Environmental Monitoring System)和基于MODT-RAN的ACORN(Atmospheric CORrection Now)两种大气校正软件,对太湖梅梁湾的三景不同成像角度CHRIS图像进行大气校正,将大气校正后的图像水体反射率与地面同步实测水体反射率进行比较分析。结果表明,经过大气校正的CHRIS图像得到的水面反射率与实测反射率波形十分地接近,在全部波长范围内的相关系数达到90%。分析实测的水体反射率角度特征,发现图像的角度特征更明显。三个观测角度下反射率之间的各差值都呈现出在绿光波段较大,在红光和近红外波段偏小的特点,这和实测结果相符。ACORN校正后的图像的角度特征更好地与实测结果吻合。
文摘Four heavyweight guests in the field of public health gathered together.No-bel Laureate Jules A Hoffmann,Academician George Fu Gao,Professor Chris Walzer and Professor Jiahai Lu discussed how to deal with global public health crises,such as the recent coronavirus disease 2019(COVID-19)pandemic,as well as the role of international organizations.The concept of“One Health”emerged as the latest approach to disease prevention and control.This concept emphasizes the intertwined health of humans,animals and the environment.The experts shared their thoughts and insights on how humanity can address emerging global public health crises through international cooperation.
基金supported by the National Natural Science Foundation of China(Grant No:40271085)the National"973"Key Basic Research Development Program(Grant No:2002CB412506).
文摘The CHRIS (Compact High Resolution Imaging Spectrometer) is a new imaging spectrometer, carried on board a new space platform called PROBA (Project for On Board Autonomy). The satellite was successfully launched in October 2001 by the European Space Agency (ESA). CHRIS operates over the visible/near infrared band (400-1050 nm). It has five work modes and can reach a maximum of 62 spectral bands. In this research, atmospheric correction based on hyperspectral images was performed on CHRIS images by using the popular radiance transfer code ACORN (Atmospheric Correction Now) and empirical algorithms. ACORN was also used to evaluate the calibration performance of CHRIS by the retrieved spectra of typical vegetation and soil. As a result,the maize reflectance spectrum corrected by ACORN could characterize vegetation reflectance in the range of 498-750 nm, but gave a fairly large deviation beyond 750 nm,showing the deficiency of spectral calibration beyond 750 nm. The ACORN-derived soil reflectance decreased beyond 800 nm, which was quite inconsistent with field-spectrummeasurement and showed that the calibration accuracy couldn't meet the requirements of ACORN for spectral and radiometric calibration within a certain spectral range. In addition,the stripes on the retrieved water-vapor content map indicated that the radiance-calibration performance of CHRIS is not perfect. As the first spaceborne hyperspectral imager of ESA, the calibration performance of CHRIS needs to be improved.