In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on...In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on the joint application of the three kinds of fluorescence analysis in the physiological study of microalgae. Flow cytometry and fluorescence spectrometry were used to obtain the in vivo static fluorescence information of pigments, and a Pulsed-Amplitude-Modulation chlorophyll fluorometer was used to detect the dynamic fluorescence of chlorophyll. The validity of the joint application was proved by analyzing two labora- tory cultured Arctic microalgae, Pseudo-nitzschia delicatissima (Bacillariophyceae) and Thalassiosira sp. The higher value of minimum fluorescence yield in dark-adapted state (Fo), actual photochemical efficiency of PSll (ФPSII), and electron transport rate (ETR) exhibited positive results in a higher cell abundance and chlorophyll a content of P. delicatissima; whereas higher fl-carotene content of Thalassiosira sp. played an important role in the protection of photosynthesis.展开更多
Physiological, biochemical and electron microscopy analyses were used to investigate the photosynthetic performance of flag leaves in rice white stripe mutant 6001 during the senescence process. Results showed that th...Physiological, biochemical and electron microscopy analyses were used to investigate the photosynthetic performance of flag leaves in rice white stripe mutant 6001 during the senescence process. Results showed that the chlorophyll content at the heading and milk-ripe stages in rice mutant 6001 were about 34.78% and 3.00% less than those in wild type 6028, respectively. However, the chlorophyll content at the fully-ripe stage in rice mutant 6001 was higher than that in wild type 6028. At the heading stage, the net photosynthetic rate (Pn) in rice mutant 6001 was lower than that in wild type 6028. Rice mutant 6001 also exhibited a significantly slower decrease rate of Pn than wild type 6028 during the senescence progress, especially at the later stage. Furthermore, Ca2^-ATPase, Mg~^-ATPase and photophosphorylation activities exhibited the similar trends as the Po. During the senescence process, the 68 kDa polypeptide concentrations in the thylakoid membrane proteins exhibited a significant change, which was one of the critical factors that contributed to the observed change in photosynthesis. We also observed that the chloroplasts of rice mutant 6001 exhibited higher integrity than those of wild type 6028, and the chloroplast membrane of rice mutant 6001 disintegrated more slow during the senescence process. In general, rice mutant 6001 had a relatively slower senescence rate than wild type 6028, and exhibited anti-senescence properties.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant no.41076130)the SOA Youth Marine Science Foundation (Grant no.2010116)the Open Research Foundation of Laboratory of Marine Ecosystem and Biogeochemistry,SOA (Grant no.LMEB200902)
文摘In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on the joint application of the three kinds of fluorescence analysis in the physiological study of microalgae. Flow cytometry and fluorescence spectrometry were used to obtain the in vivo static fluorescence information of pigments, and a Pulsed-Amplitude-Modulation chlorophyll fluorometer was used to detect the dynamic fluorescence of chlorophyll. The validity of the joint application was proved by analyzing two labora- tory cultured Arctic microalgae, Pseudo-nitzschia delicatissima (Bacillariophyceae) and Thalassiosira sp. The higher value of minimum fluorescence yield in dark-adapted state (Fo), actual photochemical efficiency of PSll (ФPSII), and electron transport rate (ETR) exhibited positive results in a higher cell abundance and chlorophyll a content of P. delicatissima; whereas higher fl-carotene content of Thalassiosira sp. played an important role in the protection of photosynthesis.
基金supported by the National Natural Science Foundation of China (Grant No. 31271621)the Natural Science Foundation of the Jiangsu Ordinary Higher Education Institutions of China (Grant No. 11KJA180001)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China
文摘Physiological, biochemical and electron microscopy analyses were used to investigate the photosynthetic performance of flag leaves in rice white stripe mutant 6001 during the senescence process. Results showed that the chlorophyll content at the heading and milk-ripe stages in rice mutant 6001 were about 34.78% and 3.00% less than those in wild type 6028, respectively. However, the chlorophyll content at the fully-ripe stage in rice mutant 6001 was higher than that in wild type 6028. At the heading stage, the net photosynthetic rate (Pn) in rice mutant 6001 was lower than that in wild type 6028. Rice mutant 6001 also exhibited a significantly slower decrease rate of Pn than wild type 6028 during the senescence progress, especially at the later stage. Furthermore, Ca2^-ATPase, Mg~^-ATPase and photophosphorylation activities exhibited the similar trends as the Po. During the senescence process, the 68 kDa polypeptide concentrations in the thylakoid membrane proteins exhibited a significant change, which was one of the critical factors that contributed to the observed change in photosynthesis. We also observed that the chloroplasts of rice mutant 6001 exhibited higher integrity than those of wild type 6028, and the chloroplast membrane of rice mutant 6001 disintegrated more slow during the senescence process. In general, rice mutant 6001 had a relatively slower senescence rate than wild type 6028, and exhibited anti-senescence properties.