Sepsis remains a leading cause of death in the intensive care units and in all age groups worldwide. Early recognition and diagnosis are key to achieving improved outcomes.Therefore, novel biomarkers that might better...Sepsis remains a leading cause of death in the intensive care units and in all age groups worldwide. Early recognition and diagnosis are key to achieving improved outcomes.Therefore, novel biomarkers that might better inform clinicians treating such patients are surely needed. The main attributes of successful biomarkers would be high sensitivity,specificity, possibility of bedside monitoring and financial accessibility. A panel of sepsis biomarkers along with currently used laboratory tests will facilitate earlier diagnosis,timely treatment and improved outcome may be more effective than single biomarkers. In this review, we summarize the most recent advances on sepsis biomarkers evaluated in clinical and experimental studies.展开更多
The chitinase-like proteins YKL-39 (chitinase 3-like-2) and Chitortriosidase (CHIT-1) are members of the chitinases family. YKL-39 expression has been associated with osteoarthritis, whereas CHIT-1 activity is regarde...The chitinase-like proteins YKL-39 (chitinase 3-like-2) and Chitortriosidase (CHIT-1) are members of the chitinases family. YKL-39 expression has been associated with osteoarthritis, whereas CHIT-1 activity is regarded as a biochemical marker of macrophage activation. So far, the physiological or pathological role of YKL-39 in the inflammation is still poorly understood. We compared YKL-39 and CHIT-1 modulation during monocyte to macrophage transition and polarization. Gene expression analysis was investigated by real-time PCR from mRNA of human monocytes obtained from buffy coat of healthy volunteers, from mRNA of polarized macrophages to classically activated macrophages (or M1), obtained by interferon-γ and lipopolysaccharide exposure, and from mRNA of alternatively activated macrophages (or M2) obtained by interleukin-4 exposure. We demonstrated different variations of YKL-39 and CHIT-1 production during macrophages polarization. CHIT-1 levels gradually increase in the course of the time with a peak of expression between the fifth and the seventh day of culture. In contrast, YKL-39 expression was unaltered in the diverse stage of HMMs differentiation, but increased significantly in M1 polarized macrophages and reverted to base levels in M2 polarized macrophages. These findings indicated that the function of YKL-39 is much more restricted and selective than that exerted by CHIT-1.展开更多
Forty four consecutive subjects aged 29-58 years (21 males and 23 females) with a clinical diagnosis of heterozygous familial hypercholesterolemia periodically treated every 30 days with LDL-apheresis for statin resis...Forty four consecutive subjects aged 29-58 years (21 males and 23 females) with a clinical diagnosis of heterozygous familial hypercholesterolemia periodically treated every 30 days with LDL-apheresis for statin resistance, were enrolled in this study. A lipid profile was obtained immediately before starting LDL-apheresis, a second profile was obtained within four hours after LDL-apheresis. Chit activity and anti-oxLDL levels were determined with appropriate methods in all patients before and after LDL- apheresis. Total cholesterol, LDL-cholesterol, HDL- cholesterol and triglycerides decreased significantly after LDL-apheresis, while the variations of Chit activity and anti-oxLDL were not significant after LDL-apheresis. The correlation between Chit and total cholesterol was negative (r= –0.44 and –0.50 res- pectively) before and after LDL-apheresis as between Chit and LDL-cholesterol (r= –0.45 and –0.55 respectively). Anti-oxLDL concentration before and after LDL-apheresis positively correlated with Chit activity (r= 0.52 and r = 0.63 respectively), negatively with total cholesterol (r= –0.33 and r = –0.35 res- pectively) and with LDL (r = –0.32 and r = –0.21 respectively). We think that removing LDL with LDL-apheresis the anti-oxLDL/oxLDL ratio could increase and the excess of anti-oxLDL could induce macrophage activation through the surface Fc receptors. Alternatively with high levels of LDL- cholesterol, the deposition of foam cells represent the characteristic evolution of atherosclerosis process. Macrophage activation in the heterozygous familial hypercholesterolemia could represent an attempt for re-modeling the vessel wall, reducing the growth of lipid plaques.展开更多
M1-type macrophages are capable of inducing lysis in various types of cancer cells, but the mechanism of action is unclear. It has been noted that an "unknown protein" produced together with protease by acti...M1-type macrophages are capable of inducing lysis in various types of cancer cells, but the mechanism of action is unclear. It has been noted that an "unknown protein" produced together with protease by activated macrophages is responsible for this action. Activated M1 macrophages have been recently reported to produce family 18 chitinases, all of which have been named chitotriosidase. Our experiments have demonstrated that family 18 chitinases work together with proteases and can damage various cancer cells both in vitro and in vivo. Thus, in this article, we suggest that the 50-kDa chitotriosidase is the reported "unknown protein". In addition, we discuss how to properly stimulate activated M1 macrophages to produce 50-kDa chitotriosidases and proteases for destroying cancer cells. Because family 19 chitinase has recently been reported to kill cancer cells, we also discuss the possibility of directly using human family 18 chitotriosidase and the humanized plant family 19 chitinase for cancer treatment.展开更多
目的研究冠心病患者血清壳三糖苷酶活性的临床意义。方法测定126例冠心病患者血清壳三糖苷酶的活性及其血脂水平,并与对照组相比较,分析其临床意义。结果在对照组、稳定性冠心病(SCHD)组和急性冠脉综合征(ACS)组壳三糖苷酶活性(nm o l/m...目的研究冠心病患者血清壳三糖苷酶活性的临床意义。方法测定126例冠心病患者血清壳三糖苷酶的活性及其血脂水平,并与对照组相比较,分析其临床意义。结果在对照组、稳定性冠心病(SCHD)组和急性冠脉综合征(ACS)组壳三糖苷酶活性(nm o l/m l.h)分别为76.2±24.6,85.2±25.7,102.3±26.2。冠心病组显著高于对照组(分别为P<0.05、P<0.01),同时ACS组与SCHD组也存在显著差异(P<0.01)。结论壳三糖苷酶可以作为体内巨噬细胞激活的标志,反映动脉硬化症患者巨噬细胞的功能,检测其血清含量可能有助于稳定型心绞痛与不稳定型心绞痛的鉴别诊断。展开更多
文摘Sepsis remains a leading cause of death in the intensive care units and in all age groups worldwide. Early recognition and diagnosis are key to achieving improved outcomes.Therefore, novel biomarkers that might better inform clinicians treating such patients are surely needed. The main attributes of successful biomarkers would be high sensitivity,specificity, possibility of bedside monitoring and financial accessibility. A panel of sepsis biomarkers along with currently used laboratory tests will facilitate earlier diagnosis,timely treatment and improved outcome may be more effective than single biomarkers. In this review, we summarize the most recent advances on sepsis biomarkers evaluated in clinical and experimental studies.
文摘The chitinase-like proteins YKL-39 (chitinase 3-like-2) and Chitortriosidase (CHIT-1) are members of the chitinases family. YKL-39 expression has been associated with osteoarthritis, whereas CHIT-1 activity is regarded as a biochemical marker of macrophage activation. So far, the physiological or pathological role of YKL-39 in the inflammation is still poorly understood. We compared YKL-39 and CHIT-1 modulation during monocyte to macrophage transition and polarization. Gene expression analysis was investigated by real-time PCR from mRNA of human monocytes obtained from buffy coat of healthy volunteers, from mRNA of polarized macrophages to classically activated macrophages (or M1), obtained by interferon-γ and lipopolysaccharide exposure, and from mRNA of alternatively activated macrophages (or M2) obtained by interleukin-4 exposure. We demonstrated different variations of YKL-39 and CHIT-1 production during macrophages polarization. CHIT-1 levels gradually increase in the course of the time with a peak of expression between the fifth and the seventh day of culture. In contrast, YKL-39 expression was unaltered in the diverse stage of HMMs differentiation, but increased significantly in M1 polarized macrophages and reverted to base levels in M2 polarized macrophages. These findings indicated that the function of YKL-39 is much more restricted and selective than that exerted by CHIT-1.
文摘Forty four consecutive subjects aged 29-58 years (21 males and 23 females) with a clinical diagnosis of heterozygous familial hypercholesterolemia periodically treated every 30 days with LDL-apheresis for statin resistance, were enrolled in this study. A lipid profile was obtained immediately before starting LDL-apheresis, a second profile was obtained within four hours after LDL-apheresis. Chit activity and anti-oxLDL levels were determined with appropriate methods in all patients before and after LDL- apheresis. Total cholesterol, LDL-cholesterol, HDL- cholesterol and triglycerides decreased significantly after LDL-apheresis, while the variations of Chit activity and anti-oxLDL were not significant after LDL-apheresis. The correlation between Chit and total cholesterol was negative (r= –0.44 and –0.50 res- pectively) before and after LDL-apheresis as between Chit and LDL-cholesterol (r= –0.45 and –0.55 respectively). Anti-oxLDL concentration before and after LDL-apheresis positively correlated with Chit activity (r= 0.52 and r = 0.63 respectively), negatively with total cholesterol (r= –0.33 and r = –0.35 res- pectively) and with LDL (r = –0.32 and r = –0.21 respectively). We think that removing LDL with LDL-apheresis the anti-oxLDL/oxLDL ratio could increase and the excess of anti-oxLDL could induce macrophage activation through the surface Fc receptors. Alternatively with high levels of LDL- cholesterol, the deposition of foam cells represent the characteristic evolution of atherosclerosis process. Macrophage activation in the heterozygous familial hypercholesterolemia could represent an attempt for re-modeling the vessel wall, reducing the growth of lipid plaques.
文摘M1-type macrophages are capable of inducing lysis in various types of cancer cells, but the mechanism of action is unclear. It has been noted that an "unknown protein" produced together with protease by activated macrophages is responsible for this action. Activated M1 macrophages have been recently reported to produce family 18 chitinases, all of which have been named chitotriosidase. Our experiments have demonstrated that family 18 chitinases work together with proteases and can damage various cancer cells both in vitro and in vivo. Thus, in this article, we suggest that the 50-kDa chitotriosidase is the reported "unknown protein". In addition, we discuss how to properly stimulate activated M1 macrophages to produce 50-kDa chitotriosidases and proteases for destroying cancer cells. Because family 19 chitinase has recently been reported to kill cancer cells, we also discuss the possibility of directly using human family 18 chitotriosidase and the humanized plant family 19 chitinase for cancer treatment.
文摘目的研究冠心病患者血清壳三糖苷酶活性的临床意义。方法测定126例冠心病患者血清壳三糖苷酶的活性及其血脂水平,并与对照组相比较,分析其临床意义。结果在对照组、稳定性冠心病(SCHD)组和急性冠脉综合征(ACS)组壳三糖苷酶活性(nm o l/m l.h)分别为76.2±24.6,85.2±25.7,102.3±26.2。冠心病组显著高于对照组(分别为P<0.05、P<0.01),同时ACS组与SCHD组也存在显著差异(P<0.01)。结论壳三糖苷酶可以作为体内巨噬细胞激活的标志,反映动脉硬化症患者巨噬细胞的功能,检测其血清含量可能有助于稳定型心绞痛与不稳定型心绞痛的鉴别诊断。